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Motivation

Find an algorithm for the construction of self-dual string solutions

o Effective description of M2-branes proposed in 2007.

@ This created lots of interest:
BLG-model: >440 citations, ABJM-model: >555 citations

@ Inspired by an idea by Basu-Harvey:
Propose a lift of the Nahm eqn. describing D1-D3-system:
Basu-Harvey eqn. describes M2-M5-brane system

@ Nahm transform:
go from Nahm eqn. to Bogomolny monopole eqn.
switch perspective from D1-brane to D3-brane

@ Is there a lift for this Nahm transform?
go from BH eqn. to self-dual string eqn.
switch perspective from M2-brane to M5-brane

@ Such a transform would open up interesting possibilities:
eff. description of M5-branes, new integrable structures, ...
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Outline

We will discuss the construction of monopoles and lift each ingredient to M-theory.

Basu-Harvey lift of the Nahm equation and 3-Lie algebras
Monopoles and self-dual strings

Principal U(1)-bundles, abelian gerbes and loop space
ADHMN construction and its lift

Examples of self-dual string solutions

e 6 6 o o o

Non-abelian tensor multiplet on loop space
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1-D3-Branes and the Nahm Equation

dim 0 1 2 3 ... 6 D1-branes ending on D3-branes:
D1 x X
D3 x X X X A Monopole appears.

X% € U(N): transverse fluctuations

Nahm equation: (s = z9)
iy k(X7 XM =0
—— ds
Solution: X* = r(s)G" with

r(s)=—-, G'=e"GI,G¥
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D1-D3-Branes and the Nahm Equation

The D1-branes end on the D3-branes by forming a fuzzy funnel.

dim 0 1 2 3 ... 6
D1 x % ' '
D3 X X X X Solution: X* = r(s)G"
1 4 L
r(s) = o Gt = eVk[GI, GR]

The D1-branes form a fuzzy funnel:

G* form irrep of SU(2):
coordinates on fuzzy sphere S%

D1-worldvolume polarizes: 2d — 4d
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Lifting D1-D3-Branes to M2-M5-Branes

The lift to M-theory is performed by a T-duality and an M-theory lift

B 0 1 2 3 4 5 6
D1 x X
D3 x x x X

T-dualize along x°:
A~ 0 1 2 3 4 5 6
D2 x X X
D4 x x x X X
Interpret 2 as M-theory direction:

M 0 1 2 3 4 5 6

M2 x X X
M x X X X X X
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The Basu-Harvey lift of the Nahm Equation

M2-branes ending on M5-branes yield a Nahm equation with a cubic term.

M2 % Y A Self-Dual String appears.

Substitute SO(3)-inv. Nahm eqn.

d . iy .
— X4 R X X =0
P + e [XY, X"

-/‘ by the SO(4)-invariant equation

Ly w0 x0 x0) = 0
ds
Solution: X* = r(s)G* with

Basu, Harvey, hep-th/0412310 r(s) = \1[ , Gl = MGV GP, GO
s
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The Basu-Harvey lift of the Nahm Equation

M2-branes ending on M5-branes yield a Nahm equation with a cubic term.

M?2
M5

Solution: X* = r(s)GH

r(s) = \}g |G = emTIGY, 6P, G

The M2-branes form a fuzzy funnel:

G* form a rep of SO(4):
coordinates on fuzzy sphere S%.

M2-worldvolume polarizes: 3d — 6d

What is this triple bracket?

Christian Samann
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What is the algebra behind the triple bracket?

In analogy with Lie algebras, we can introduce 3-Lie algebras.

d
EXM + [AS,X“] +€“VpU[XV,Xp,XG] =0, X*te A
S

Trivial: A is a vector space, [, -, ] trilinear+antisymmetric.

> Gauge transformations from inner derivations:
The triple bracket forms a map 6 : AAA — Der(A) =: g4 via

64rB(C) :=[A, B, (]
Demand a “3-Jacobi identity,” the fundamental identity:
dans(dcap(E)) = [A, B, [C, D, E]]
=1[[A,B,C],D,E]+ [C,[A,B,D],E]| + [C, D, A, B, E]
The inner derivations form indeed a Lie algebra:
[64rB, dcAD](E) == dan(dcap(E)) — dcap(0ans(E))

Bracket closes due to fundamental identity.
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Monopoles and Self-Dual Strings

Lifting monopoles to M-theory yields self-dual strings.

BPS configuration!

Switch perspective: D1— D3:
Bogomolny monopole eqn.:

Fj=¢eijtVi® = V& =0
Single D3: Dirac monopole

1 1
@ = - = = —
T T(S) S

= matching profile!
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BPS configuration!

Switch perspective: M2— M5:
Self-dual string eqn.:

HMVP - Suypg-ao-(b = 82(1) =0

Only single M5 known:

1
= = =
r2 T(S)

S
NG

= matching profile!
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Dirac Monopoles and Principal U(1)-bundles

Dirac monopoles are described by principal U(1)-bundles over S2.

Manifold M with cover (U;);. Principal U(1)-bundle over M:

FeQ*(M,u(1)),
Agy € Q' (Ui, u(1)) with F = dAg
gi; € QUi N U;,U(1)) with Ay — Ay = dlog gy
Consider monopole in R?, but describe it on S? around monopole:
S? with patches U, U_, U, NU_~ S g, =e " ncZ
i

: 1 2
1= — J— A+—A_:/ ndp =n
21 Jg2 2m g1 21 Jo

Monopole charge: n
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Self-Dual Strings and Abelian Gerbes

Self-dual strings are described by abelian gerbes.

Manifold M with cover (U;);. Abelian (local) gerbe over M:

H e Q3(M,u(1)),
B() e 0? (U,u(l)) with H = dB()
Aijy € QYU N Uj,u(1)) with By — By = dAjy;
hiji € ox (U; nU; N Uk, u(1)) with A(ZJ A(z’k) + A(jk) = dhyj,

Note: Local gerbe: principal U(1)-bundles on intersections U; N Uj.

Consider S3, patches U, ,U_, Uy NU_ ~ S?%: bundle over S?
Reflected in: H%(S%,7) = H3(S3,7) 2 7.

i i
— — B —-B_=...=
2m Jgs " or * "

Charge of self-dual string: n
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Abelian Gerbes and loop space

By going to loop space, one can reduce differential forms by one degree.

Consider the following double fibration:

LM x St
N
LM

Identify TLM = LT M, then: x € LM = &(1)e LTM

(&
M

Transgression

T: QMY (M) — Q¥ M), T=|[ loev*
Sl

(Tw)z(v1 (1), ..., v6(7)) := /Sl drw(vi(7),...,vx(1), (7))

An abelian local gerbe over M is a principal U(1)-bundle over LM.

Note: Most of the time, we will work on £M x S*.
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The ADHMN construction

There is a map between monopole solutions and solutions to the Nahm equations.

Nahm transform: Instantons on T* — instantons on (7%)*

Roughly here:

3rad. 0 3rad. oo : D3 WV
4. 4\ %,
T'{lrad.oo:DlWV and(T)'{lrad.O

Introduce (twisted) “Dirac operators™
Vie=—1L + 00 @ (1X' +2'1y) , Voo =14 +0' @ (1X° +2'1y)
Properties:
Asz = Vs2Vsz >0, [Asz,0'] =0 & X' satisfy Nahm eqn.
Normalized zero modes: ?s,xw&%a =0,1= fI ds 1/7)5@1#3@ yield:
9 _ _
Ay ::/dsd)&xd)s,x and @ := —1/dsz/)s7xsws,z
I Oxt I

This is a solution to the Bogomolny monopole equations!



Examples: Dirac monopoles

One can easily construct Dirac monopole solutions using the ADHMN construction.

Charge 1: Nahm eqn: 0,X% =0, so put X’ = 0. Zero mode:
R+xz3 [ o' —iz?
_ —SR
Ve =e xl—ix2< R — a3

Monopole solution:

. . 3 3
pt=— oar=—_ 1 (21 -L) (12
oR 1 T 2zl 1 22)? (x rR) " r)"°

Charge 2: Nahm eqn. nontrivial. Choose:

) 1 . ) i _.
Xi= 2T with TZ:%:—TZ
S 1

Resulting solution:

i

R

ot = , Af =,
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Lift of the “Dirac operator”

There is a natural lift of the Dirac operator to M-theory.

Type |IB (twisted): B 0 1 2 3 4 5 6

1B d Lo ) D1 X
s,a::_]l&_FO-Z(IXZ_FxZHk) D3 x x x X

Type HA (twisted): A0 1 2 3 4 5 6
d ' D2 x X X
A _ 75]1kd +9M (X —iz") D4 x x x  x X
M-theory (untwisted): M 0 1 2 3 4 5 6
M2 X X

M 775; Q'y“”D(X“,X”) M5 x X X X X X
M-theory (twisted):
/ d v v : SV
Yoy = =+ (D (XH, XY) — ia(r)i (7))
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Lifted ADHMN Construction

The lifted ADHMN construction yields solutions to the loop space self-dual string eqns.

Recall: AB .= yUBWIB [AIB 5] — (0 & X7 satisfy Nahm eqn.
Here: AM := YMYM [A ~#] =0 < X" satisfy BH eqn.
Our Dirac operator involved loop space, so we need to transgress:
H = <5 gaCI>> da* A da” A da?
HoPT Hgo

is turned into

0 0

Fu(z(r)) : Ay (z(r)) = 5uupaip(7)%q’<$(7)>

= Oxln

From normalized, .A-valued zero modes 1, ,(;) of VM construct

_ 0 . _
A,u, = /dS ws,x(r)@q/]s,x(f) , ©= —l/dS ws,x(T) Sws,x(r)
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Verification of the Construction

Verifying the construction is rather straightforward.
B = [ ds(0,6.0,10:
— [ as [t (0 - VYGM (s, V) B,y
_ /ds/dtlﬁs (,YWQ.CHGNI(S7t)7qu-,\ B ,Yl/nx-,/iGM(S’t),yu)\j:)\) "
Identity : [y"F, 7227 = 26 p0y Y5l "
Py = g [ ds [ e, (297 95GM (s, )35) v
e / ds / At (@) (vuthe — VYN (5, OFM) £t
bos (et = VYGM(s, OV} 050t )
= g [ s (0r0) 502+ D5 O

= €Lpo il 0P
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Reduction to the ADHMN Construction

The lift reduces in the expected way to the ADHMN construction.

On L£S3 C LRY: zhat = iHiHt = R2, zHit = 0.
Reduction (cf. Mukhi/Papageorgakis, 0803.3218):

r . g
<X4>:W€4ZQYM€4’ .774(7'0):R:>£L‘(T)—l’4( )—O
P

., 0 0
F/W = 5uupa5ﬂp%q)SDS — Fij = 51jk@R‘bSDS + ...

d d i 4 ik
X = G XY XX X = e VRRIXT XR) 4

VM = <5 Sy (ADO(XP, XY) —ia(r)it ()
d : i
- - "5 + (%D(”)(X“,X”) — izt (1) (To))
d , .
=%, + Ry% (X“J‘D(p)(ea, eq) — iz (7’0)> 4. =V
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Examples
Our examples reproduce the expected solutions.

Charge 1: Choose again trivial Nahm data. Zero modes:

i (R? + 2?2 — 2132 — 2143 + 2334)

s | 2@ +id?) + 2t (@2 —idt) — (2 +in?) (2% — i)
Y ~e 0
0
Solution:
b — i 2isin 0! sin? 62 (92 doAdet —61 dpAdo>+¢ do' Ad6?)

s, =
2R V32 4+2(61)2+4(62)2— (2 42(61)2) cos(202) —242 cos(201) sin? 62
This solves the loop-space self-dual string equation.

Regression:
02191 2
H F’el 1 62 0¢ 0 /\ Slne d9 - F‘91:0762:1,¢:0 /\ d9
+ F|é1:0’92:07¢:1 A sin 0! sin #2dé
— 6isin ' sin? 02 dO A dO? A do ,
This is indeed the expected solution.
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Examples
Our examples reproduce the expected solutions.

Charge 2:
Nahm data: .
Xt =—E | ¢, generate A
V2s ' a
Solution:

i
TR
As expected: twice the charge of the case k = 1.

®(z)
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Remarks

Our lift of the ADHMN construction is very natural and rather straightforward.

The lift of the Dirac operator was natural considering the
corresponding brane configurations.

It is natural to go to loop space to describe self-dual strings.
The construction nicely involves the Basu-Harvey equation.
It reduces nicely to the ADHMN construction.

The construction does produce transgressed self-dual strings.

A regression can be performed to get original self-dual string.
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The non-abelian tensor multiplet

A recently proposed 3-Lie algebra valued tensor-multiplet implies a transgression.

Recall the transgression map:

(Tw)z(v1(7), ... v6(7)) := /S1 drw(vi(7),...,vx(7), (7))
Equations found by Lambert, Papageorgakis, 1007.2982:
vix!t i e, ov - (X7, C, (X7, C, X7
v, v — X!, cv,1,1'v
Vi Hong + $€mwrpor (X1 VT X Cl + Lepmaper [V, I, C7]
F,, — D(C* Hy»)
V,.C" = D(CH,C") =
D(C*,V,X") = D(CP,V,¥) = D(C",V,H,,))

Factorization of C” = C'i”. Here, 3-Lie algebra transgression:

(Tw)g(v1(7), ..., v6(7)) := /Sl dr D(w(vi(71),...,vk(7),2(7)),C)
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The non-abelian tensor multiplet on loop space

The corresponding equations can all be rewritten on loop space.

Transgression of fermions (missing in Huang, Huang, 1008.3834)
T = 2T ,¥
Equations of motion (SYM-like):
vex!h+ iy, r,rir, o - (X7, 0,x7,0, X =0
r“v,Y — X1, C, 11 =0
V" +2D(C, X1, vV X!, C] +i[Y, (48°T 3" — 2I) Y, C]) = 0
Supersymmetry transformations (SYM-like):
oX! =ier!irT, Y
6T = &, "IV, X e + oiq T T F*e — ST (X1 X7 Ole
§A, =it D(C*, V)
oCct =0
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Remarks
The loop space tensor multiplet fits well into the picture.

Note that this is work in progress (with C. Papageorgakis)
Get SYM theory on loop space from the tensor multiplet
C-field blocks modes of the theory, need to get rid of it

Our loop space self-dual string equation extends compatibly:
VHFuy = €uupet” D(C, V7 X°)

ADHMN construction for two M5-branes using this equation

Right direction, more work necessary to get rid of C' etc.
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Conclusions
Summary and Outlook.

Summary:
v Reformulation of self-dual string equation on loop space
v Generalized ADHMN construction for self-dual string
v Explicit construction of K =1 and k = 2 examples
v Reformulate non-abelian tensor multiplet eqns. on loop space
v~ Partially generalized ADHMN construction
Future directions:
> Extend constructions to non-commutative/non-abelian cases
> Study classical integrability in more detail

> Quantization of S® via gerbes and groupoids
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