Alternating Sign Matrices and Descending Plane Partitions

R. Behrend, P. Di Francesco and P. Zinn-Justin

Laboratoire de Physique Théorique des Hautes Energies
UPMC Université Paris 6 and CNRS

March 8, 2011
Introduction

- **Plane Partitions** were introduced by Mac Mahon about a century ago. However **Descending Plane Partitions** (DPPs), as well as other variations on plane partitions (symmetry classes), were considered in the 80s. [Andrews]

- **Alternating Sign Matrices** (ASMs) also appeared in the 80s, but in a completely different context, namely in Mills, Robbins and Rumsey’s study Dodgson’s condensation algorithm for the evaluation of determinants.

- One of the possible formulations of the **Alternating Sign Matrix conjecture** is that these objects are in bijection (for every size n). (proved by Zeilberger in ’96 in a slightly different form)
Introduction

- **Plane Partitions** were introduced by MacMahon about a century ago. However, **Descending Plane Partitions (DPPs)**, as well as other variations on plane partitions (symmetry classes), were considered in the 80s. [Andrews]

- **Alternating Sign Matrices (ASMs)** also appeared in the 80s, but in a completely different context, namely in Mills, Robbins and Rumsey’s study Dodgson’s condensation algorithm for the evaluation of determinants.

- One of the possible formulations of the **Alternating Sign Matrix conjecture** is that these objects are in bijection (for every size n). (proved by Zeilberger in ’96 in a slightly different form)
Introduction

- **Plane Partitions** were introduced by MacMahon about a century ago. However, **Descending Plane Partitions (DPPs)**, as well as other variations on plane partitions (symmetry classes), were considered in the 80s. [Andrews]

- **Alternating Sign Matrices (ASMs)** also appeared in the 80s, but in a completely different context, namely in Mills, Robbins and Rumsey’s study Dodgson’s condensation algorithm for the evaluation of determinants.

- One of the possible formulations of the **Alternating Sign Matrix conjecture** is that these objects are in bijection (for every size n). (proved by Zeilberger in ’96 in a slightly different form)
Introduction cont’d

Interest in the mathematical physics community because of

1. Kuperberg’s alternative proof of the Alternating Sign Matrix conjecture using the connection to the six-vertex model. (’96)

2. The Razumov–Stroganov correspondence and related conjectures. (’01)

A proof of all these conjectures would probably give a fundamentally new proof of the ASM (ex-)conjecture.

J. Propp (’03)
Introduction cont’d

Interest in the mathematical physics community because of

1. Kuperberg’s alternative proof of the Alternating Sign Matrix conjecture using the connection to the six-vertex model. (’96)
2. The Razumov–Stroganov correspondence and related conjectures. (’01)

A proof of all these conjectures would probably give a fundamentally new proof of the ASM (ex-)conjecture.

J. Propp (’03)
Interest in the mathematical physics community because of

1. Kuperberg’s alternative proof of the Alternating Sign Matrix conjecture using the connection to the six-vertex model. ('96)

2. The Razumov–Stroganov correspondence and related conjectures. ('01)

A proof of all these conjectures would probably give a fundamentally new proof of the ASM (ex-)conjecture.

J. Propp ('03)
Interest in the mathematical physics community because of

1. Kuperberg’s alternative proof of the Alternating Sign Matrix conjecture using the connection to the six-vertex model. ('96)

2. The Razumov–Stroganov correspondence and related conjectures. ('01)

 A proof of all these conjectures would probably give a fundamentally new proof of the ASM (ex-)conjecture.

 J. Propp ('03)

T. Fonseca and P. Zinn-Justin: proof of the doubly refined Alternating Sign Matrix conjecture ('08).
Interest in the mathematical physics community because of

1. Kuperberg’s alternative proof of the Alternating Sign Matrix conjecture using the connection to the six-vertex model. ('96)

2. The Razumov–Stroganov correspondence and related conjectures. ('01)

A proof of all these conjectures would probably give a fundamentally new proof of the ASM (ex-)conjecture.

J. Propp ('03)

Today’s talk is about the proof of another generalization of the ASM conjecture formulated in ’83 by Mills, Robbins and Rumsey.
Iterative use of the Desnanot–Jacobi identity:

\[
\begin{array}{|c|c|} \hline
\begin{array}{|c|c|} \hline
\end{array} & \begin{array}{|c|} \hline
\end{array} \\
\hline
\end{array} = \begin{array}{|c|c|c|} \hline
\begin{array}{|c|c|} \hline
\end{array} & \begin{array}{|c|} \hline
\end{array} & \begin{array}{|c|} \hline
\end{array} \\
\hline
\end{array} - \begin{array}{|c|c|c|} \hline
\begin{array}{|c|c|} \hline
\end{array} & \begin{array}{|c|} \hline
\end{array} & \begin{array}{|c|} \hline
\end{array} \\
\hline
\end{array}
\]

allows to compute the determinant of a $n \times n$ matrix by computing the determinants of the connected minors of size 1, \ldots, n.

What happens when we replace the minus sign with an arbitrary parameter?
Iterative use of the Desnanot–Jacobi identity:

\[
\begin{array}{|c|c|c|c|}
\hline
\times & \times & \times & \times \\
\hline
\times & \times & \times & \times \\
\hline
\times & \times & \times & \times \\
\hline
\end{array}
\quad = \quad
\begin{array}{|c|c|c|c|}
\hline
\times & \times & \times & \times \\
\hline
\times & \times & \times & \times \\
\hline
\times & \times & \times & \times \\
\hline
\end{array}
\quad - \quad
\begin{array}{|c|c|c|c|}
\hline
\times & \times & \times & \times \\
\hline
\times & \times & \times & \times \\
\hline
\times & \times & \times & \times \\
\hline
\end{array}
\]

allows to compute the determinant of a $n \times n$ matrix by computing the determinants of the connected minors of size 1, \ldots, n.

What happens when we replace the minus sign with an arbitrary parameter?
Iterative use of the Desnanot–Jacobi identity:

\[
\begin{array}{cccc}
\square & \square & \square & \square \\
\square & \square & \square & \square \\
\square & \square & \square & \square \\
\lambda & \square & \square & \square \\
\end{array}
\]

allows to compute the determinant of a $n \times n$ matrix by computing the determinants of the connected minors of size $1, \ldots, n$.

What happens when we replace the minus sign with an arbitrary parameter?
Theorem (Robbins, Rumsey, '86)

If M is an $n \times n$ matrix, then

$$\det_{\lambda} M = \sum_{A \in \text{ASM}(n)} \lambda^{\nu'(A)} (1 + \lambda)^{\mu(A)} \prod_{i,j=1}^{n} M^{A}_{ij}$$

Here $\text{ASM}(n)$ is the set of $n \times n$ Alternating Sign Matrices, that is matrices such that in each row and column, the non-zero entries form an alternation of $+1$s and -1s starting and ending with $+1$.
Theorem (Robbins, Rumsey, '86)

If M is an $n \times n$ matrix, then

$$\det_{\lambda} M = \sum_{A \in \text{ASM}(n)} \lambda^{\nu'(A)} (1 + \lambda)^{\mu(A)} \prod_{i,j=1}^{n} M_{ij}^{A_{ij}}$$

Here $\text{ASM}(n)$ is the set of $n \times n$ Alternating Sign Matrices, that is matrices such that in each row and column, the non-zero entries form an alternation of $+1$s and -1s starting and ending with $+1$.
For $n = 3$, there are 7 ASMs:

\[
ASM(3) = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}
\]
$\mu(A)$ is the number of -1s in A.

$\nu'(A)$ is a generalization of the inversion number of A:

$$\nu'(A) = \sum_{1 \leq i < i' \leq n, 1 \leq j' < j \leq n} A_{ij} A_{i'j'}$$

In what follows it is more convenient to consider another generalization of the inversion number, namely

$$\nu(A) = \nu'(A) - \mu(A) = \sum_{1 \leq i < i' \leq n, 1 \leq j' < j \leq n} A_{ij} A_{i'j'}$$

Finally, for future purposes define $\rho(A)$ to be the number of 0's to the left of the 1 in the first row of A.
\(\mu(A) \) is the number of \(-1\)s in \(A \).

\(\nu'(A) \) is a generalization of the inversion number of \(A \):

\[
\nu'(A) = \sum_{1 \leq i < i' \leq n} A_{ij} A_{i'j'}
\]

\[
\sum_{1 \leq j' < j \leq n}
\]

In what follows it is more convenient to consider another generalization of the inversion number, namely

\[
\nu(A) = \nu'(A) - \mu(A) = \sum_{1 \leq i \leq i' \leq n} A_{ij} A_{i'j'}
\]

Finally, for future purposes define \(\rho(A) \) to be the number of 0’s to the left of the 1 in the first row of \(A \).
\(\mu(A) \) is the number of \(-1\)s in \(A \).

\(\nu'(A) \) is a generalization of the inversion number of \(A \):

\[
\nu'(A) = \sum_{1 \leq i < i' \leq n} A_{ij} A_{i'j'}
\]

In what follows it is more convenient to consider another generalization of the inversion number, namely

\[
\nu(A) = \nu'(A) - \mu(A) = \sum_{1 \leq i < i' \leq n} A_{ij} A_{i'j'}
\]

Finally, for future purposes define \(\rho(A) \) to be the number of 0’s to the left of the 1 in the first row of \(A \).
\(\mu(A) \) is the number of \(-1\)s in \(A \).

\(\nu'(A) \) is a generalization of the inversion number of \(A \):

\[
\nu'(A) = \sum_{1 \leq i < i' \leq n} A_{ij} A_{i'j'}
\]

In what follows it is more convenient to consider another generalization of the inversion number, namely

\[
\nu(A) = \nu'(A) - \mu(A) = \sum_{1 \leq i \leq i' \leq n} A_{ij} A_{i'j'}
\]

Finally, for future purposes define \(\rho(A) \) to be the number of 0’s to the left of the 1 in the first row of \(A \).
A **Descending Plane Partition** is an array of positive integers ("parts") of the form

\[
\begin{array}{cccc}
D_{11} & D_{12} & \cdots & D_{1,\lambda_1} \\
D_{22} & \cdots & \cdots & D_{2,\lambda_2+1} \\
\vdots & \ddots & \ddots & \ddots \\
D_{tt} & \cdots & D_{t,\lambda_t+t-1}
\end{array}
\]

such that

- The parts decrease weakly along rows, i.e., \(D_{ij} \geq D_{i,j+1} \).
- The parts decrease strictly down columns, i.e., \(D_{ij} > D_{i+1,j} \).
- The first parts of each row and the row lengths satisfy

\[
D_{11} > \lambda_1 \geq D_{22} > \lambda_2 \geq \cdots \geq D_{t-1,t-1} > \lambda_{t-1} \geq D_{tt} > \lambda_t
\]
Let $\text{DPP}(n)$ be the set of DPPs in which each part is at most n, i.e., such that $D_{ij} \in \{1, \ldots, n\}$.

Example

For $n = 3$, there are 7 DPPs:

$$\text{DPP}(3) = \left\{ \emptyset, \begin{array}{c} 3 \\ 2 \end{array}, 2, 3 \ 3, 3, 3 \ 2, 3 \ 1 \right\}$$
Let $DPP(n)$ be the set of DPPs in which each part is at most n, i.e., such that $D_{ij} \in \{1, \ldots, n\}$.

Example

For $n = 3$, there are 7 DPPs:

$$DPP(3) = \left\{ \emptyset, \begin{array}{c} 3 \\ 2 \end{array}, 2, 3 3, 3, 3 2, 3 1 \right\}$$
Define statistics for each $D \in \text{DPP}(n)$ as:

$\nu(D) =$ number of parts of D for which $D_{ij} > j - i$,

$\mu(D) =$ number of parts of D for which $D_{ij} \leq j - i$,

$\rho(D) =$ number of parts equal to n in (necessarily the first row of) D.
DPP enumeration

Theorem (Andrews, 79)

The number of DPPs with parts at most \(n \) is:

\[
|DPP(n)| = \prod_{i=0}^{n-1} \frac{(3i + 1)!}{(n + i)!} = 1, 2, 7, 42, 429 \ldots
\]
The Alternating Sign Matrix conjecture

The following result was first conjectured by Mills, Robbins and Rumsey in ’82:

Theorem (Zeilberger, ’96; Kuperberg, ’96)

The number of ASMs of size \(n \) is

\[
|\text{ASM}(n)| = \prod_{i=0}^{n-1} \frac{(3i + 1)!}{(n + i)!} = 1, 2, 7, 42, 429 \ldots
\]

NB: A third family is also known to have the same enumeration as ASMs and DPPs: TSSCPPs. In fact, Zeilberger’s proof consists of a (non-bijective) proof of equienumeration of ASMs and TSSCPPs.
The following result was first conjectured by Mills, Robbins and Rumsey in '82:

Theorem (Zeilberger, '96; Kuperberg, '96)

The number of ASMs of size n is

$$|\text{ASM}(n)| = \prod_{i=0}^{n-1} \frac{(3i + 1)!}{(n + i)!} = 1, 2, 7, 42, 429 \ldots$$

NB: a third family is also known to have the same enumeration as ASMs and DPPs: TSSCPPs. In fact, Zeilberger’s proof consists of a (non-bijective) proof of equi enumeration of ASMs and TSSCPPs.
A more general result was conjectured by Mills, Robbins and Rumsey in ’83:

Theorem (Behrend, Di Francesco, Zinn-Justin, ’11)

The sizes of \{A \in \text{ASM}(n) \mid \nu(A) = p, \mu(A) = m, \rho(A) = k\} and \{D \in \text{DPP}(n) \mid \nu(D) = p, \mu(D) = m, \rho(D) = k\} are equal for any \(n, p, m\) and \(k\).

Equivalently, if one defines generating series:

\[
Z_{\text{ASM}}(n, x, y, z) = \sum_{A \in \text{ASM}(n)} x^\nu(A) y^\mu(A) z^\rho(A)
\]

\[
Z_{\text{DPP}}(n, x, y, z) = \sum_{D \in \text{DPP}(n)} x^\nu(D) y^\mu(D) z^\rho(D)
\]

then the theorem states that \(Z_{\text{ASM}}(n, x, y, z) = Z_{\text{DPP}}(n, x, y, z)\).
A more general result was conjectured by Mills, Robbins and Rumsey in '83:

Theorem (Behrend, Di Francesco, Zinn-Justin, '11)

The sizes of \(\{A \in \text{ASM}(n) \mid \nu(A) = p, \mu(A) = m, \rho(A) = k\} \) and \(\{D \in \text{DPP}(n) \mid \nu(D) = p, \mu(D) = m, \rho(D) = k\} \) are equal for any \(n, p, m \) and \(k \).

Equivalently, if one defines generating series:

\[
Z_{\text{ASM}}(n, x, y, z) = \sum_{A \in \text{ASM}(n)} x^{\nu(A)} y^{\mu(A)} z^{\rho(A)}
\]

\[
Z_{\text{DPP}}(n, x, y, z) = \sum_{D \in \text{DPP}(n)} x^{\nu(D)} y^{\mu(D)} z^{\rho(D)}
\]

then the theorem states that \(Z_{\text{ASM}}(n, x, y, z) = Z_{\text{DPP}}(n, x, y, z) \).
Example \((n = 3)\)

\[
\text{ASM}(3) = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix} \right\}
\]

\[
\text{DPP}(3) = \left\{ \emptyset, \begin{pmatrix} 3 \\ 3 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \\ 3 \\ 3 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 3 \\ 1 \end{pmatrix} \right\}
\]

\[
Z_{\text{ASM/DPP}}(3, x, y, z) = 1 + x^3z^2 + x + x^2z^2 + xz + x^2z + xyz
\]
Strategy: write the two generating series as determinants:

\[Z_{\text{ASM}}(n, x, y, z) = \det M_{\text{ASM}}(n, x, y, z) \]
\[Z_{\text{DPP}}(n, x, y, z) = \det M_{\text{DPP}}(n, x, y, z) \]

and transform one matrix into another by row/column manipulations.

In what follows, we only give the proof in the “unrefined” case \(z = 1 \).
Strategy: write the two generating series as determinants:

\[Z_{\text{ASM}}(n, x, y, z) = \det M_{\text{ASM}}(n, x, y, z) \]
\[Z_{\text{DPP}}(n, x, y, z) = \det M_{\text{DPP}}(n, x, y, z) \]

and transform one matrix into another by row/column manipulations.

In what follows, we only give the proof in the “unrefined” case \(z = 1 \).
Strategy: write the two generating series as determinants:

\[
Z_{\text{ASM}}(n, x, y, z) = \det M_{\text{ASM}}(n, x, y, z)
\]

\[
Z_{\text{DPP}}(n, x, y, z) = \det M_{\text{DPP}}(n, x, y, z)
\]

and transform one matrix into another by row/column manipulations.

In what follows, we only give the proof in the “unrefined” case \(z = 1 \).
Strategy: write the two generating series as determinants:

\[Z_{ASM}(n, x, y, z) = \det M_{ASM}(n, x, y, z) \]
\[Z_{DPP}(n, x, y, z) = \det M_{DPP}(n, x, y, z) \]

and transform one matrix into another by row/column manipulations.

In what follows, we only give the proof in the “unrefined” case \(z = 1 \).
Let $\text{6VDW}(n)$ be the set of all configurations of the six-vertex model on the $n \times n$ grid with DWBC, i.e., decorations of the grid’s edges with arrows such that:

- The arrows on the external edges are fixed, with the horizontal ones all incoming and the vertical ones all outgoing.
- At each internal vertex, there are as many incoming as outgoing arrows.

The latter condition is the “six-vertex” condition, since it allows for only six possible arrow configurations around an internal vertex:

![Diagram of six possible arrow configurations around an internal vertex](image-url)
Let $6VDW(n)$ be the set of all configurations of the six-vertex model on the $n \times n$ grid with DWBC, i.e., decorations of the grid’s edges with arrows such that:

- The arrows on the external edges are fixed, with the horizontal ones all incoming and the vertical ones all outgoing.
- At each internal vertex, there are as many incoming as outgoing arrows.

The latter condition is the “six-vertex” condition, since it allows for only six possible arrow configurations around an internal vertex:
Let $6VDW(n)$ be the set of all configurations of the six-vertex model on the $n \times n$ grid with DWBC, i.e., decorations of the grid’s edges with arrows such that:

- The arrows on the external edges are fixed, with the horizontal ones all incoming and the vertical ones all outgoing.
- At each internal vertex, there are as many incoming as outgoing arrows.

The latter condition is the “six-vertex” condition, since it allows for only six possible arrow configurations around an internal vertex:
The bijection from $6\text{VDW}(n)$ to $\text{ASM}(n)$
The bijection from $6 \text{VDW}(n)$ to $\text{ASM}(n)$
The bijection from $6\text{VDW}(n)$ to $\text{ASM}(n)$
The bijection from $6VDW(n)$ to $ASM(n)$
The bijection from $6\text{VDW}(n)$ to $\text{ASM}(n)$
The bijection from $6\text{VDW}(n)$ to $\text{ASM}(n)$
The bijection from $6\text{VDW}(n)$ to $\text{ASM}(n)$
The bijection from $6VDW(n)$ to $ASM(n)$
Statistics

Statistics also have a nice interpretation in terms of the six-vertex model: if $A \in \text{ASM}(n) \leftrightarrow C \in 6\text{VDW}(n)$,

$$\mu(A) = \frac{1}{2} ((\text{number of vertices of type } c \text{ in } C) - n)$$

$$\nu(A) = \frac{1}{2} (\text{number of vertices of type } a \text{ in } C)$$
Define the six-vertex partition function of the six-vertex model with DWBC to be:

\[
Z_{6\text{VDW}}(u_1, \ldots, u_n; v_1, \ldots, v_n) = \sum_{C \in 6\text{VDW}(n)} \prod_{i,j=1}^{n} C_{ij}(u_i, v_j)
\]

where the \(u_i\) (resp. the \(v_j\)) are parameters attached to each row (resp. a column), and \(C_{ij}\) is the type of configuration at vertex \((i, j)\).

\[
a(u, v) = uq - \frac{1}{vq}, \quad b(u, v) = \frac{u}{q} - \frac{q}{v}, \quad c(u, v) = \left(q^2 - \frac{1}{q^2}\right)\sqrt{\frac{u}{v}}
\]
Based on Korepin’s recurrence relations for Z_{6VDW}, Izergin found the following determinant formula:

Theorem (Izergin, ’87)

$$Z_{6VDW}(u_1, \ldots, u_n; v_1, \ldots, v_n) \propto \frac{\det_{1 \leq i,j \leq n} \left(\frac{1}{a(u_i, v_j)b(u_i, v_j)} \right)}{\prod_{1 \leq i < j \leq n} (u_j - u_i)(v_j - v_i)}$$

Problem: what happens in the homogeneous limit $u_1, \ldots, u_n, v_1, \ldots, v_n \to r$?
Based on Korepin’s recurrence relations for Z_{6VDW}, Izergin found the following determinant formula:

Theorem (Izergin, ’87)

$$Z_{6VDW}(u_1, \ldots, u_n; v_1, \ldots, v_n) \propto \det_{1 \leq i, j \leq n} \left(\frac{1}{a(u_i, v_j)b(u_i, v_j)} \right) \prod_{1 \leq i < j \leq n} (u_j - u_i)(v_j - v_i)$$

Problem: what happens in the homogeneous limit $u_1, \ldots, u_n, v_1, \ldots, v_n \to r$?
The "naive" homogeneous limit:

\[Z_{6VDW}(r, \ldots, r; r, \ldots, r) \propto \det_{0 \leq i, j \leq n-1} \frac{\partial^{i+j}}{\partial u^i \partial v^j} \left(\frac{1}{a(u, v)b(u, v)} \right) \bigg|_{u, v=r} \]

\[\propto \det_{0 \leq i, j \leq n-1} \frac{\partial^{i+j}}{\partial u^i \partial v^j} \left(\frac{1}{uv - q^2} - \frac{1}{uv - q^{-2}} \right) \bigg|_{u, v=r} \]
Define L_{ij} to be the $n \times n$ lower-triangular matrix with entries $\binom{i}{j}$, and D to be the diagonal matrix with entries $\left(\frac{qr-q^{-1}r^{-1}}{q^{-1}rqr^{-1}}\right)^i$, $i = 0, \ldots, n - 1$.

Proposition (Behrend, Di Francesco, Zinn-Justin, ’11)

$$Z_{6\text{VDW}}(r, \ldots, r; r, \ldots, r) \propto \det \left(I - \frac{r^2 - q^{-2}}{r^2 - q^2} DLDL^T \right)$$

Proof: write the determinant as $\det(A_+ - A_-)$, note that A_\pm is up to a diagonal conjugation $\frac{1}{r^2 - q^\pm 2} D_\pm LD_\pm L^T$, pull out $\det A_+$ and conjugate $I - A_- A_+^{-1} \ldots$
Define L_{ij} to be the $n \times n$ lower-triangular matrix with entries $\binom{i}{j}$, and D to be the diagonal matrix with entries $\left(\frac{q r - q^{-1} r^{-1}}{q^{-1} r - q r^{-1}} \right)^i$, $i = 0, \ldots, n - 1$.

Proposition (Behrend, Di Francesco, Zinn-Justin, ’11)

$$Z_{6VDW}(r, \ldots, r; r, \ldots, r) \propto \det \left(I - \frac{r^2 - q^{-2}}{r^2 - q^2} DLDL^T \right)$$

Proof: write the determinant as $\det(A_+ - A_-)$, note that A_\pm is up to a diagonal conjugation $\frac{1}{r^2 - q^{\pm 2}} D_\pm LD_\pm L^T$, pull out $\det A_+$ and conjugate $I - A_- A_+^{-1} \ldots$
Rewriting the previous proposition in terms of Boltzmann weights a, b, c, and then switching to $x = (a/b)^2$, $y = (c/b)^2$, we finally find $Z_{ASM}(n, x, y, 1) = \det M_{ASM}(n, x, y, 1)$ with

$$M_{ASM}(n, x, y, 1)_{ij} = (1 - \omega)\delta_{ij} + \omega \sum_{k=0}^{\min(i,j)} \binom{i}{k} \binom{j}{k} x^k y^{i-k}$$

with $i, j = 0, \ldots, n-1$ and ω a solution of

$$y\omega^2 + (1 - x - y)\omega + x = 0$$
Alternating Sign Matrices
Descending Plane Partitions
The ASM-DPP conjecture
Proof: determinant formulae
Generalizations

The Izergin determinant formula
The Lindström–Gessel–Viennot formula
Equality of determinants

R. Behrend, P. Di Francesco and P. Zinn-Justin

Alternating Sign Matrices and Descending Plane Partitions
Alternating Sign Matrices and Descending Plane Partitions

The ASM-DPP conjecture

Proof: determinant formulae

Generalizations

The Izergin determinant formula

The Lindström–Gessel–Viennot formula

Equality of determinants
Alternating Sign Matrices
Descending Plane Partitions
The ASM-DPP conjecture
Proof: determinant formulae
Generalizations

The Izergin determinant formula
The Lindström–Gessel–Viennot formula
Equality of determinants

R. Behrend, P. Di Francesco and P. Zinn-Justin
Alternating Sign Matrices
Descending Plane Partitions
The ASM-DPP conjecture
Proof: determinant formulae
Generalizations

The Izergin determinant formula
The Lindström–Gessel–Viennot formula
Equality of determinants

R. Behrend, P. Di Francesco and P. Zinn-Justin
Alternating Sign Matrices and Descending Plane Partitions
Alternating Sign Matrices
Descending Plane Partitions
The ASM-DPP conjecture
Proof: determinant formulae
Generalizations

The Izergin determinant formula
The Lindström–Gessel–Viennot formula
Equality of determinants

R. Behrend, P. Di Francesco and P. Zinn-Justin

Alternating Sign Matrices and Descending Plane Partitions
Alternating Sign Matrices
Descending Plane Partitions
The ASM-DPP conjecture
Proof: determinant formulae
Generalizations

The Izergin determinant formula
The Lindström–Gessel–Viennot formula
Equality of determinants

R. Behrend, P. Di Francesco and P. Zinn-Justin

Alternating Sign Matrices and Descending Plane Partitions
Alternating Sign Matrices
Descending Plane Partitions
The ASM-DPP conjecture
Proof: determinant formulae
Generalizations

The Izergin determinant formula
The Lindström–Gessel–Viennot formula
Equality of determinants

R. Behrend, P. Di Francesco and P. Zinn-Justin
Alternating Sign Matrices
Descending Plane Partitions
The ASM-DPP conjecture
Proof: determinant formulae
Generalizations

The Izergin determinant formula
The Lindström–Gessel–Viennot formula
Equality of determinants
Alternating Sign Matrices
Descending Plane Partitions
The ASM-DPP conjecture
Proof: determinant formulae
Generalizations

The Izergin determinant formula
The Lindström–Gessel–Viennot formula
Equality of determinants

R. Behrend, P. Di Francesco and P. Zinn-Justin

Alternating Sign Matrices and Descending Plane Partitions
Alternating Sign Matrices
Descending Plane Partitions
The ASM-DPP conjecture
Proof: determinant formulae
Generalizations

The Izergin determinant formula
The Lindström–Gessel–Viennot formula
Equality of determinants

R. Behrend, P. Di Francesco and P. Zinn-Justin

Alternating Sign Matrices and Descending Plane Partitions
Alternating Sign Matrices
Descending Plane Partitions
The ASM-DPP conjecture
Proof: determinant formulae
Generalizations

The Izergin determinant formula
The Lindström–Gessel–Viennot formula
Equality of determinants

R. Behrend, P. Di Francesco and P. Zinn-Justin
Alternating Sign Matrices
Descending Plane Partitions
The ASM-DPP conjecture
Proof: determinant formulae
Generalizations

The Izergin determinant formula
The Lindström–Gessel–Viennot formula
Equality of determinants

R. Behrend, P. Di Francesco and P. Zinn-Justin

Alternating Sign Matrices and Descending Plane Partitions
Alternating Sign Matrices
Descending Plane Partitions
The ASM-DPP conjecture
Proof: determinant formulae
Generalizations

The Izergin determinant formula
The Lindström–Gessel–Viennot formula
Equality of determinants
R. Behrend, P. Di Francesco and P. Zinn-Justin

Alternating Sign Matrices and Descending Plane Partitions

The Izergin determinant formula
The Lindström–Gessel–Viennot formula
Equality of determinants
Alternating Sign Matrices
Descending Plane Partitions
The ASM-DPP conjecture
Proof: determinant formulae
Generalizations
The Izergin determinant formula
The Lindström–Gessel–Viennot formula
Equality of determinants
Alternating Sign Matrices
Descending Plane Partitions
The ASM-DPP conjecture
Proof: determinant formulae
Generalizations

The Izergin determinant formula
The Lindström–Gessel–Viennot formula
Equality of determinants
Alternating Sign Matrices
Descending Plane Partitions
The ASM-DPP conjecture
Proof: determinant formulae
Generalizations

The Izergin determinant formula
The Lindström–Gessel–Viennot formula
Equality of determinants

R. Behrend, P. Di Francesco and P. Zinn-Justin
Alternating Sign Matrices and Descending Plane Partitions
Alternating Sign Matrices
Descending Plane Partitions
The ASM-DPP conjecture
Proof: determinant formulae
Generalizations

The Izergin determinant formula
The Lindström–Gessel–Viennot formula
Equality of determinants

R. Behrend, P. Di Francesco and P. Zinn-Justin
Alternating Sign Matrices
Descending Plane Partitions
The ASM-DPP conjecture
Proof: determinant formulae
Generalizations

The Izergin determinant formula
The Lindström–Gessel–Viennot formula
Equality of determinants
Alternating Sign Matrices
Descending Plane Partitions
The ASM-DPP conjecture
Proof: determinant formulae
Generalizations

The Izergin determinant formula
The Lindström–Gessel–Viennot formula
Equality of determinants
Alternating Sign Matrices and Descending Plane Partitions

Proof: determinant formulae

Generalizations

The Izergin determinant formula

The Lindström–Gessel–Viennot formula

Equality of determinants
Alternating Sign Matrices
Descending Plane Partitions
The ASM-DPP conjecture
Proof: determinant formulae
Generalizations

The Izergin determinant formula
The Lindström–Gessel–Viennot formula
Equality of determinants
Alternating Sign Matrices
Descending Plane Partitions
The ASM-DPP conjecture
Proof: determinant formulae
Generalizations

The Izergin determinant formula
The Lindström–Gessel–Viennot formula
Equality of determinants
Alternating Sign Matrices
Descending Plane Partitions
The ASM-DPP conjecture
Proof: determinant formulae
Generalizations

The Izergin determinant formula
The Lindström–Gessel–Viennot formula
Equality of determinants
Alternating Sign Matrices
Descending Plane Partitions
The ASM-DPP conjecture
Proof: determinant formulae
Generalizations

The Izergin determinant formula
The Lindström–Gessel–Viennot formula
Equality of determinants
Alternating Sign Matrices and Descending Plane Partitions

The ASM-DPP conjecture
Proof: determinant formulae
Generalizations

The Izergin determinant formula
The Lindström–Gessel–Viennot formula
Equality of determinants
Alternating Sign Matrices
Descending Plane Partitions
The ASM-DPP conjecture
Proof: determinant formulae
Generalizations

The Izergin determinant formula
The Lindström–Gessel–Viennot formula
Equality of determinants
Statistics

Statistics also have a nice interpretation in terms of Nonintersecting lattice paths (NILPs):

\[D = \]

\[\nu(D) = 7 \]
\[\mu(D) = 2 \]
NILPS are (lattice) free fermions:

Number of NILPs from S_i to E_i, $i = 1, \ldots, n$

$$= \det_{i,j=1,\ldots,n} \text{(Number of (single) paths from } S_i \text{ to } E_j)$$

and similarly with weighted sums.
NILPS are (lattice) free fermions:

Number of NILPs from S_i to E_i, $i = 1, \ldots, n$

$$= \det_{i,j=1,\ldots,n} \text{(Number of (single) paths from } S_i \text{ to } E_j)$$

and similarly with weighted sums.
Here we are also summing over endpoints and the number of paths ("grand canonical partition function"):
\[Z_{DPP}(n, x, y, 1) = \det M_{DPP}(n, x, y, 1) \]

with

\[M_{DPP}(n, x, y, 1) = \delta_{ij} + \sum_{k=0}^{i-1} \sum_{\ell=0}^{\min(j,k)} \binom{j}{\ell} \binom{k}{\ell} x^{\ell+1} y^{k-\ell} \]

Note that the second term is a product of two discrete transfer matrices...
We have

\[(I - S)M_{\text{DPP}}(n, x, y, 1)(I + (\omega - 1)S^T)\]
\[= (I + (x - \omega y - 1)S)M_{\text{ASM}}(n, x, y, 1)(I - S^T)\]

where \(I_{ij} = \delta_{i,j}\) and \(S_{ij} = \delta_{i,j+1}\).

Therefore,

\[Z_{\text{DPP}}(n, x, y, 1) = Z_{\text{ASM}}(n, x, y, 1)\]
We have

\[(I - S)M_{\text{DPP}}(n, x, y, 1)(I + (\omega - 1)S^T) = (I + (x - \omega y - 1)S)M_{\text{ASM}}(n, x, y, 1)(I - S^T)\]

where \(I_{ij} = \delta_{i,j}\) and \(S_{ij} = \delta_{i,j+1}\).

Therefore,

\[Z_{\text{DPP}}(n, x, y, 1) = Z_{\text{ASM}}(n, x, y, 1)\]
We are working on various generalizations:

- At least one more statistic can be introduced: the **double refinement**. For ASMs this consists in recording the positions of the 1’s on both the first row and last row.

- There are **symmetry operations** on ASMs and DPPs. For example, there is an operation * which for ASMs is symmetry wrt a vertical axis, and for DPPs viewed as rhombus tilings is reflection in any of the three lines bisecting the central triangular hole.

De Gier, Pyatov and Zinn-Justin have proved in ’09 a conjecture of Mills, Robbins and Rumsey concerning these. The proof can probably be simplified and the result generalized.

Other symmetries?
We are working on various generalizations:

- At least one more statistic can be introduced: the **double refinement**. For ASMs this consists in recording the positions of the 1’s on both the first row and last row.

- There are **symmetry operations** on ASMs and DPPs. For example, there is an operation * which for ASMs is symmetry wrt a vertical axis, and for DPPs viewed as rhombus tilings is reflection in any of the three lines bisecting the central triangular hole.

De Gier, Pyatov and Zinn-Justin have proved in ’09 a conjecture of Mills, Robbins and Rumsey concerning these. The proof can probably be simplified and the result generalized.

Other symmetries?
We are working on various generalizations:

- At least one more statistic can be introduced: the **double refinement**. For ASMs this consists in recording the positions of the 1’s on both the first row and last row.

- There are **symmetry operations** on ASMs and DPPs. For example, there is an operation * which for ASMs is symmetry wrt a vertical axis, and for DPPs viewed as rhombus tilings is reflection in any of the three lines bisecting the central triangular hole. De Gier, Pyatov and Zinn-Justin have proved in ’09 a conjecture of Mills, Robbins and Rumsey concerning these. The proof can probably be simplified and the result generalized.

Other symmetries?
We are working on various generalizations:

- At least one more statistic can be introduced: the double refinement. For ASMs this consists in recording the positions of the 1's on both the first row and last row.

- There are symmetry operations on ASMs and DPPs. For example, there is an operation * which for ASMs is symmetry wrt a vertical axis, and for DPPs viewed as rhombus tilings is reflection in any of the three lines bisecting the central triangular hole.

De Gier, Pyatov and Zinn-Justin have proved in ’09 a conjecture of Mills, Robbins and Rumsey concerning these. The proof can probably be simplified and the result generalized.

Other symmetries?