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A little RCFT background



WZNW models

Witten, 1984

Gy

» class of CFTs that describe the motion of a string on a group
manifold
» G Lie group, k € Z-( "level” of the WZNW model

» action is of the form

Swznw = Skinetic + k - Swz

» extraordinary features:

> algebra of conserved currents = affine Lie algebra gi
> primary fields labeled by highest weight representations of gx
= finite number of primary fields, i.e. these theories are examples of
rational CFTs



From WZNW to Kazama-Suzuki models

» Construction: Kazama and Suzuki, 1989
1 Gk supersymmetrize N — 1 version gauge subgroup WZNW coset
2. for G/H Hermitean Symmetric Space (HSS) = KS-model:
G
2K % 50(2d),
H —_———
Majorana-fermions
with:
> G simple compact Lie group
> k level of the corresponding affine Lie algebra g

> H C G regularly embedded subgroup (i.e. rk G = rk H)
> 2d =dim G — dim H

Note: the Majorana-fermions are realized in "bosonized form", i.e.
as a so(2d); WZNW-model

» Motivation: provides a large class of A" = (2,2) rational SCFTs



Grassmannian Kazama-Suzuki models
SU(n + 1)/U(n)

SU(n+ k)1 x SO(2nk), o~ SU(n+ 1)k x SO(2n);

SU(n)k+1 X SU(k)n+1 X U(l) o SU(n)k+1 X U(l)
» Note: we use the diagram embedding

SU(n+1)
f—/%
—eo—o— —0O
%/—/

SU(n)



Grassmannian Kazama-Suzuki models
SU(n + 1)/U(n)

SU(n+ k)1 x SO(2nk)1 , SU(n+ 1)k x SO(2n);
SU(n)k+1 X SU(k)n+1 X U(l) o 5U(n)k+1 X U(l)

» Note: we use the diagram embedding
SU(n+1)
f—/%
oo —0O
%/—/
SU(n)
. h( 0
i(h,¢) = 0 (" e SU(n+1) heSU(n),¢ e U1)

Since i(¢711,&) =1 for " =1, "H C Gx " only if we quotient by
the Z,, action:
U(n) = (SU(n) x U(1))/Zn,

= field identifications!



SU(n + 1),/ U(n) = 5U§Zz;7)1k)il><xsg((12)n)1

» highest weight labels: ( A |, X ; X |, p )
~ N N~

su(nt1) so(2d)1 su(niis u(1),.
where the so(2d); for any d can take values
> X =0, v : Neveu-Schwarz sector
> ¥ =s,5 Ramond sector
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~~ ~ N~
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where the so(2d); for any d can take values
> X =0, v : Neveu-Schwarz sector
> X = 5,5 Ramond sector

» non-trivial common center Z = i~!(Zsy(p+1)) of the numerator and
denominator theory = cyclic group Z,(,41) (simple currents) Gjg



SU(n + 1),/ U(n) = 5U§Zz;7)1k)il><xsg((12)n)1

» highest weight labels: ( A |, X ; X |, p )
~ N N~

su(nt1) so(2d)1 su(niis u(1),.
where the so(2d); for any d can take values
> X =0, v : Neveu-Schwarz sector
> ¥ =s,5 Ramond sector

» non-trivial common center Z = i~!(Zsy(p+1)) of the numerator and
denominator theory = cyclic group Z,(,41) (simple currents) Gjg

» labels are restricted by Gepner, 1089; Lerche et al., 1089; Moore and Seiberg, 1989
> identification rules via action of Gy, Schellekens and Yankiclowicz, 1089, 1990
generated by the simple current Jo = (Jnt1, Vi Jn, k + n)

AT\ p) ~ I (NZ A ) VmeZ

> selection rules: monodromy charges of the numerator and
denominator parts should be equal

Qinia () + Qu(E) = Q1 (A) + Quern(p)
with QJ(@) =h,+ h¢ — h_/¢ mod 1



Bulk correspondence



Gepner 1991: KS model =% LG model

Idea: {ring of chiral prim. fields} « fusion ring
» chiral primary fields: h= £ and h = 1

2
» OPE of chiral primary fields:

1

¢(Z)T(Z/) ~t (Z _ z/)h¢+hy—hw (

O T)(z)+...



Gepner 1991: KS model =% LG model

Idea: {ring of chiral prim. fields} « fusion ring
» chiral primary fields: h= £ and h = 1

2
» OPE of chiral primary fields:

1

¢(Z)T(Z/) ~t (Z _ z/)h¢+hy—hw (

O T)(z)+...

» since hot > (go + g1)/2 = he + hy, we obtain, rescaling
coordinates by A and taking the limit A — oo:

(®T)(2), if T is a cpf

2=z 0 else

d(2)T(2) == lim &(2)T () = {

= ring of chiral primary fields



Gepner 1991: KS model =% LG model

Idea: {ring of chiral prim. fields} « fusion ring

»
| 4

chiral primary fields: h= ¢ and h = g
OPE of chiral primary fields:

1
(Z _ z/)h¢>+hT—h®T

O(2)T(Z) ~ ... + (®T)(z2) + ...

since hor > (9o + gv)/2 = he + hyv, we obtain, rescaling
coordinates by A and taking the limit A — oo:

S(2)T(2) := lim (2)T(Z') =

z/'—z

{(cw)(z), if ®T is a cpf

0 else

= ring of chiral primary fields
Gepner: cpf ring is the same as a truncation of the fusion ring

M x €72 = TR TAS(Q - @1 - Qo)



Gepner 1991: KS model =% LG model

Idea: {ring of chiral prim. fields} « fusion ring
» chiral primary fields: h= £ and h = g
» OPE of chiral primary fields:

1
(Z _ z/)h¢>+hT—h®T

O(2)T(Z) ~ ... + (®T)(z2) + ...

» since hot > (go + g1)/2 = he + hy, we obtain, rescaling
coordinates by A and taking the limit A — oo:

S(2)T(2) := lim (2)T(Z') =

z/'—z

{(cw)(z), if ®T is a cpf

0 else

= ring of chiral primary fields
» Gepner: cpf ring is the same as a truncation of the fusion ring

Ch s M = AT MENINTO(Q — Q- Qo)

» Our paper: explicit computation of the SU(3),/U(2) fusion ring via
relation generating potential = Wi (y1, y2)



What is a Landau-Ginzburg theory?

bulk LG-Action: a theory of chiral scalar superfields

Sic = /d2zd4eK(¢,$)+/d2z(d29W(¢)+c.c.)

with:
> K(®,®) Kihler potential
> W(®) superpotential
> theory flows to CFT in IR < W/(®) is quasihomogeneous:

W(eid;) = 2 W(d;) vreC



What is a Landau-Ginzburg theory?

bulk LG-Action: a theory of chiral scalar superfields
Sie = / P2d 0K (®, ®) + / d2(dOW(®) + c.c.)

with:
> K(®,®) Kihler potential
> W(®) superpotential
> theory flows to CFT in IR < W/(®) is quasihomogeneous:
W(eid;) = 2 W(d;) vreC

» Question: How do we choose W(®;)?
Answer: for our purposes (Grassmannian Kazama-Suzuki models),
employ Gepner’s method, i.e. use the polynomial W(®;) such that

C[®]
(oiw)’

chiral ring of KS model = Jacy (o) :=

which implies that a given chiral primary state A, is associated to
some explicit polynomial Upr(®;) € Jacw(o,)-

i



Introducing (B-type) boundaries



From bulk to boundary KS model

» bulk Hilbert space: "almost diagonal" modular invariant

H= P Hpnzom @ Hpz

[AZiX 1]
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» bulk Hilbert space: "almost diagonal" modular invariant

H= P Hpnzom @ Hpz

[AZiX 1]

» boundary Hilbert space: via folding trick = theory on upper half
plane w/ bdry at the real line z = Z, where we demand B-type
gluing conditions:

T(z2)=T(z) J(2)=J(z) G*(z)= néi(?) Imz = Imz

with: 1 a sign corresponding to the choice of a spin structure, i.e. of
GSO projection



From bulk to boundary KS model

» bulk Hilbert space: "almost diagonal" modular invariant

H= P Hpnzom @ Hpz
[AZiX 1]

» boundary Hilbert space: via folding trick = theory on upper half
plane w/ bdry at the real line z = Z, where we demand B-type
gluing conditions:

T(z2)=T(z) J(2)=J(z) G*(z)= néi(?) Imz = Imz

with: 1 a sign corresponding to the choice of a spin structure, i.e. of
GSO projection

» B-type D-branes via Cardy construction and factorisation into
twisted bou ndary SECtOrS Fredenhagen, 2003; Ishikawa, 2002; Ishikawa and Tani, 2003, 2004

(n+1) so),l/)
IX

LS =N > A
(nEn0)ev 1/ S sl g

A, X\, 0)



Only known solutions: Cardy branes

7 Severe technical problem: in general, classification and construction
of solutions to gluing conditions not known! Notable exception:
article by Stanciu [1998]

» Cardy branes are the maximally symmetric types of D-brane
solutions, i.e. satisfy the much more restrictive gluing conditions

VV,(Z) = UJ(W,‘)(E), Cardy, 1989

with
> Wi;(z) chiral algebra current
> w outer automorphism of the chiral algebra

= Cardy branes preserve not just the N/ = 2 symmetry, but the full
chiral algebra A on the boundary!



"LG theory D-branes”

» introducing boundary breaks translation invariance normal to bdry
= at least half of the N = (2,2) symmetry broken
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» case W = 0: SUSY-variation of S, ¢ yields surface term that can be
compensated by adding Spar, (in bulk fields) to S, ¢



"LG theory D-branes”

» introducing boundary breaks translation invariance normal to bdry
= at least half of the N = (2,2) symmetry broken

» case W = 0: SUSY-variation of S, ¢ yields surface term that can be
compensated by adding Spar, (in bulk fields) to S, ¢

» W £ 0: SUSY-variation of 5. + Spdry results in term

5(5LG+5bdry /ds enW'’ —6’[7W)’0 (%)

that can not be compensated by contributions to S; ¢ in bulk fields
(Warner problem) Warner, 1095



"LG theory D-branes”

>

>

>

introducing boundary breaks translation invariance normal to bdry
= at least half of the N = (2,2) symmetry broken

case W = 0: SUSY-variation of S;¢ vyields surface term that can be
compensated by adding Spar, (in bulk fields) to S, ¢

W % 0: SUSY-variation of Sy ¢ + Spdr, results in term

0 (5L + Sbdry) = /ds enW' —enW )’0 (%)

that can not be compensated by contributions to S; ¢ in bulk fields
(Warner problem) Warner, 1095
way out: introduce boundary fermionic superfield

M=1(s,60°0°) = 1(s) + ...+ 0 (E(®) +...) with "LG-like" action
1 i .
5|-| = —5/d5d29|_“_|‘0 — E/dsdeﬂj(q))g:()‘o + c.c.

= SUSY-variation of Sp cancels () iff Brunner et al., 2003; Kapustin and Li, 2003;

Kontsevich; Orlov, 2003

W = J - € 4 const = matrix factorization!



Main problem: Which MFs are "rational”?

» Cardy branes = maximally symmetric D-branes, i.e. preerve N = 2,
but also the full chiral symmetry A
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preserve N = 2 explicitly



Main problem: Which MFs are "rational”?

» Cardy branes = maximally symmetric D-branes, i.e. preerve N = 2,
but also the full chiral symmetry A

» "LG theory D-branes”, i.e. matrix factorizations, were constructed to
preserve N = 2 explicitly

= Which MFs are "rational’’
i.e. correspond to Cardy branes

in the RCFT?



Data for boundary KS models



Our work: SU(3)x/U(2)

> bulk Hilbert space: H = @ 5.y i Hinzinu @ Hias+au
» (B-type) Cardy branes:

s0)&(2)
¢(3)5( )5
T S D Dy - LA R
su(3)pr, so(2d)s su(2)isa (AEN0EV [ Son Sos Sox

where W ... are the modular S-matrices for the twisted su(3)x43

affine Lie-algebra, while the symbol S stands for the regular modular
S-matrices

» |L,v;¢) =|L,0;¢) = shorthand notation: |L,¢) =|L,0;/)

» spectra of (chiral primary) open strings can be computed from

<L1; /1|’(‘7’%(L0+Zofﬁ) |L2; /2>ch.prim.

— Z X/\,O;/\1,/\1+2/\2(q)
A=(A1,/A2)



Ramond-Ramond charges

» B-type D-branes couple only to uncharged RR ground states!
» SU(3)x/U(2) models:

Cpf = {(/\17 /\2); O, /\17 /\1 + 2/\2)}
spectral flow RGS uncharged RGSO = L/] = {[(J’J),g, 2j + ]_7 0]}




Ramond-Ramond charges

» B-type D-branes couple only to uncharged RR ground states!
» SU(3)x/U(2) models:

cpf = {(/\1, /\2), 0; /\1, /\1 + 2/\2)}
spectral flow RGS uncharged RGSO _ L/] _ {[(J’J)’g’ 2J. + 17 0]}
= RR-charge chj(|L, ¢)) is given by coefficient of [j] in the formula

3 —=(2)
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Ramond-Ramond charges

» B-type D-branes couple only to uncharged RR ground states!

» SU(3)x/U(2) models:
Cpf = {(/\17 /\2); O, /\17 /\1 + 2/\2)}

spectral flow RGS uncharged RGSO _ L/] _ {[(_/’_/),E, 2J. + 17 0]}
= RR-charge chj(|L, ¢)) is given by coefficient of [j] in the formula

3 so)&(2)
3 PSS
AEr0)ey /S 5852

Vi) SEST)

IL,S;0) =N I\,

» here:

ehy(|L, 1)) = N —— =2
\/S(O,O)(j,j)sggso 2j+1

;)\, 0)



Ramond-Ramond charges

» B-type D-branes couple only to uncharged RR ground states!
» SU(3)x/U(2) models:

cpf = {(/\1, /\2), 0; /\1, /\1 + 2/\2)}
spectral flow RGS uncharged RGSO _ L/] _ {[(J’J)’g’ 2J. + 17 0]}
= RR-charge chj(|L, ¢)) is given by coefficient of [j] in the formula

¢(3) S(so sﬁi)

LS =N Y —H=EDA5),0)
AEr0)ey /S 5852
» here: - ®
w Ssos
chy(|L, 1)) = N — el T2

3 (2
\/5((0,)0 ',j)sggso 2)j+1

» basis: in terms of charges of the |L,0) branes

\ x~

2

hi(IL 1)) = D (NS = DR ehy (1L, 0))
L’'=0



More structure: Flows and defects

CFT HOW rUleS Fredenhagen, 2003; Fredenhagen and Schomerus, 2003
flow induced by tachyon W, = (W2 W)

ya wb
e Ak SR _4|K b)) for L# &
LE-1) 4 ILO + Loty =] Skemlfoh fort#s
IL—1,0) for L= 35

Important: W, has a specific U(1)-R-charge qu, (=1/(k + 3))!



More structure: Flows and defects

Topological defects
here: consider as operators Dg = Dy, a,),5:2,p that

» form a semi-ring under "fusion”

1 * Do, = Z Ne,e2 ®Do (”eleze € Z>o)

» act on Cardy branes By, 4y (resulting in new Cardy branes)

» Most important feature: I defect Dg ,, that generates all Cardy
branes from the |L,0) branes via

Deu) * B\M) = B|L,£71> + B|L,£+1>



Boundary LG theory data



Basic LG theory data: hmf&(W,)

Let R be a graded polynomial ring, i.e.
R=Cl[y]® = @®iczo,Rii Vp € Ri: deg(p) =i

with deg(y;) = w; € N. Let Wi(y;) € Rk+3 a quasihomogeneous
polynomial. Then

Wk(ei/\q’y;) ; ezi)‘ Wk(y,') v\ e C*

induces a U(1)-R-charge grading q,, = 2w;/(k + 3).



Basic LG theory data: hmf&(W,)

Definition: category hmfgr(Wk)
» Ob(hmfe (Wy)) = {rQ = (R, Wik, Q,0,p)}/~

> Q= (0 g) . 0,7,€ € Mat(r x r; R) (r € Z=0)

> Q2 = (jog JO 5) - Wk12r><2r

>o-Q-0=-Q (0% = —12rx2r)

> p(X yi) Qe yi)p (N yi) = € Q(yi) VAeC”



Basic LG theory data: hmf&(W,)

Definition: category hmfgr(Wk)
» Ob(hmfe (Wy)) = {rQ = (R, Wik, Q,0,p)}/~

> Q= (0 g) . 0,7,€ € Mat(r x r; R) (r € Z=0)

> Q2 = (jog JO 5) - Wk12r><2r

>o-Q-0=-Q (0% = —12rx2r)

> (X yi)Q(e ’“""y)p‘l(/\ vi) = e*Q(y;) vrecC’
» Mor(hmf& (Wy)) :== {H"9(rQa, rQ8) | i € Z2,q € Q}
> e H q(RQA7 rQb) &
ogboa = (-1)®lo (| d | Zy)
Qe® — (~1)*'0Qa =0 mod &= QW+ (~1)®dQa
pe(N; yi)®(e™ % yi)pat (N yi) = e0(yi)
i.e. this is the definition of some (graded) cohomology of MFs

» composition of morphisms: composition in cohomological sense (i.e.
naive composition up to exactness)



Equivalence of MFs

Definition

ton

Q~Q i wlogrk(Q) < k(Q) @ =U (Qa QT QL U™

where
> m,n € Zsg s.th. rk(Q) + m+n=rk(Q’)

0 1
> Qtriv = (Wk O)

> U= Uly) = (%1 82) € GLR2r x 2r':R) (' = rk(Q"))

i.e. U is invertible over R:

UU =UU = 1oy w0

7 severe technical difficulty: equivalences make it hard to guess
"interesting” MFs!



RR-charges

via Kapustin-Li formula: Kapustin and Li, 2004
1
V2

where ¢ € Jacy (i.e. some polynomial in y; and y»), Q is a MF and Str
denotes the supertrace, while the residue is formally defined as

1 f
Resw, (f) = (OB ]{ j( B, Wed, Wr dy dy»

cho(Q) Resw, (¢Str(8y1 Qd,, Q)) .



RR-charges
via Kapustin-Li formula: Kapustin and Li, 2004
1
V2

where ¢ € Jacy (i.e. some polynomial in y; and y»), Q is a MF and Str
denotes the supertrace, while the residue is formally defined as

1 f
Resw () = s 75 f T e

chy(Q) = ——Resu, (¢Str(8y1 Qd,, Q)) .

» Note: to compare this with the CFT RR charges, we need the
explicit "dictionary” between the elements of the CFT and of the LG

theory chiral rings:
/\cpf = [(/\17 /\2)7 0; /\13 /\1 + 2/\2]

~ A1/2] Ay r
= Tnaaoe) = Y- (0 (M)
r=0



More sophisticated structures

Def.: operator 7 : H"9( rQa, rQ5B) : (QA 2 QB> > (QA[—l] o, QB>
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Triangulated structure of hmf& (W)

» Def.: shift functor [1]

"= (2 g) —[1Q = QM) = (_f} ‘05)
> o= (%0 ;) — ®[1] :== (‘%1 ¢(5)o>

eHo9(RrQa, RQB) eH%4( L Qap). g QB



More sophisticated structures

Def.: operator 7 : H"9( rQa, rQ5B) : (QA 2 QB> > (QA[—l] o, QB>

Triangulated structure of hmf& (W)

» Def.: shift functor [1]

"= (2 g) —[1Q = QM) = (_f} ‘05)
> o= (%0 ;) — ®[1] :== (‘%1 ¢(5)o>

eHo9(RrQa, RQB) eH%4( L Qap). g QB

» Def.: cone functor ¢
0 0 Je  To¢o
0 Joy_| O 0 0 —&a
& 0 ) & T4 0 O
0 —-Ja O 0
> on diagrams commutative up to exact morphisms A:

> c(Qa Q) = (@) = (

Qu—L+05 e(f)

c gi \{A lg/ = c(g.h:ﬂ)i c(g,h;a)’ == (’(1]'(]?%0 (i € Zs)

Qo —1~qp e(f")



Uses of triangulated structure

» generate new MFs via ¢(Qa 2, QB)



Uses of triangulated structure

» generate new MFs via ¢(Qa 2, QB)
» Def.: distinguished triangles
> (TR1) V& € H%9( rQa, rQs)3 distinguished A
1
Qa2 Qs 2% c(@) X Quyy p(@) = ( OB) L q(®)= (0 1am)

> (TR2) if D as above, then also ALL shifts of F are distinguished, e.g.

p(®) q(P)

Qs c(®) QA[1

p(zk\ A;




Uses of triangulated structure

» generate new MFs via ¢(Qa 2, QB)
» Def.: distinguished triangles
> (TR1) V& € H%9( rQa, rQs)3 distinguished A
1
Qa2 Qs 2% c(@) X Quyy p(@) = ( OB) L q(®)= (0 1am)

> (TR2) if D as above, then also ALL shifts of F are distinguished, e.g.

p(®) q(P)

Qs c(®) QA[1

P(lk\ A;

» Prop.: [Verdier] ALL morphisms ¢ € HO"V)(QA7 c(7)) may be
obtained as ¢ = ¢(g,0; a) for some g, a as in

QA[fl] —0 Qa
c gi \\@\x l i (1(_1/.0:(L)i
Qp ——Qc e(7)

= may generate complicated cones from simpler MFs!



Preliminary version of RCFT/LG boundary correspondnce



Warmup example: SU(2),/U(1) KS model

Wi (x) = xk+2

B easiest matrix factorizations: polynomial MFs:

0 X\ .
Qi = <Xk+2—" 0) ie{l,2,....k+2}



Warmup example: SU(2),/U(1) KS model

Wi (x) = xk+2
» easiest matrix factorizations: polynomial MFs:

0 X\ .
Qi = (xk+2—" 0) ie{l,2,....k+2}

» analysis of spectra and U(1)-R- and RR-charges in both theories

leads to the association Brunner et al., 2003; Kapustin and Li, 2003

L) = Qu

= Complete solution!



Our work: SU(3)x/U(2) models

L55
y1 for k even
Wk(}’h)@) = 110 (y]_2 _51}/2) : { 1 for k odd
j=
where 3; = 2(1 + cos ( 212'1))
» via explicit computation of spectra, RR- and U(1)-R-charges:
L
0 HJ O( 61y2)>
0

IL,0) < Qo) = < Wi
1o (2 —Biy2)



Our work: SU(3)x/U(2) models

L55
y1 for k even
Wk(}’hYZ) = 110 (y]_2 _Bj.y2) : { 1 for k odd
j=
where §; = 2(1 + cos (WQJTTI))
» via explicit computation of spectra, RR- and U(1)-R-charges:
L
0 ijo()/f - Bj}/2)>

IL,0) <> Qoy = ( Wy 0
1o (2 —Biy2)

» Only partial match: |L,0) have no fermions in their self-spectra,
unlike all branes |L, ¢) with ¢ > 0. But all polynomial MFs have no
fermions in their self-spectra = need to construct higher-rank MFs!
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fermions in their self-spectra = need to construct higher-rank MFsl!

» available data:

> number of bosonic/fermionic open strings in all spectra

> U(1)-R-charges of these open-strings in the spectra
> RR-chages carried by the D-branes resp. matrix factorizations



Our work: SU(3)x/U(2) models

142

for k even

Wi(y1,y2) = H (rf - Biy2) - { }1/1 for k odd
=0

where §; = 2(1 + cos (7r2JTT1))
» via explicit computation of spectra, RR- and U(1)-R-charges:

0 [T (/2 — Biy2)
IL,0) <> Qoy = ( Wi =0 10 !
1o (2 —Biy2)

» Only partial match: |L,0) have no fermions in their self-spectra,
unlike all branes |L, ¢) with ¢ > 0. But all polynomial MFs have no
fermions in their self-spectra = need to construct higher-rank MFsl!

» available data:
> number of bosonic/fermionic open strings in all spectra
> U(1)-R-charges of these open-strings in the spectra
> RR-chages carried by the D-branes resp. matrix factorizations
> specifically for the SU(3)/U(2) model: CFT flow rules



Higher-rank matrix factorization series:
Q)
BCFT flow rule

v,

V N

IL,0) + [L,1) W®£{11L—1|K70>



Higher-rank matrix factorization series:
QL)
BCFT flow rule
v,
L

‘La 0> + ‘L7 1> ~ G9K+:1L—1|/'<7 O>

"Translating" this into a LG-theory triangle, we obtain:
.= Q|1__,0>[1] h Q|1_,1> — (D,L::lLle‘K,o) — Q‘L,()) [2] — ...

where we know the MFs colored in green and that the triangle is
distinguished for any given morphism 1., whence this allows us to shift
the triangle to obtain a candidate for Q. 1:

QL1 < C<€B§+1L1QK.0>[—1] - Q|L.O>[1])



Higher-rank matrix factorization series:
QL)
BCFT flow rule
v,
L

‘La 0> + ‘L7 1> ~ G9K+:1L—1|/'<7 O>

"Translating" this into a LG-theory triangle, we obtain:
.= Q|L_,0>[1] h Q|1_,1> — (D,L::lLle‘K,o) — Q‘L,()) [2] — ...

where we know the MFs colored in green and that the triangle is
distinguished for any given morphism 1., whence this allows us to shift
the triangle to obtain a candidate for Q. 1:

QL1 < C<€B§+1L1QK.0>[—1] - Q|L.O>[1])

Explicit analysis shows that there is exactly one possible morphism 7:!;* of
the correct U(1)-R-charge, which leads to:

~ D
IL,1) = QL = (B 1 Qk.op—1) — Quoy[1])



Brute force Ansatz: SINGULAR!

Via SINGULAR code for the explicit computation of H(Qa, Qg) for any
MFs Q; (thanks to N. Carqueville for initial code!), we can pursue the

brute force Ansatz
polynomial MFs

HY9(Qa, QB)

|

cones of
polynomial MFs

|

cones of cones
of polynomial
MFs

+

My code allows to compute the explicit spectra for all such MFs, i.e. we
can search for suitable MFs = confirmation of the previously shown MFs,
some sporadic mathces for higher label branes |L, ¢) with £ > 1



Defect functors



A relation between two LG theories. ..

The superpotential of the SU,(3)/U(2) KS model can be expressed as

Wi(y1,y2) = (472 +x573)

X3 +x2ry1
X1 X2 Y2
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The superpotential of the SU,(3)/U(2) KS model can be expressed as

Wi(y1,y2) = (472 +x573)

X1 +X2++y1
X1 X2 Y2

This may be seen from a graphical representation:
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A relation between two LG theories. ..

The superpotential of the SU,(3)/U(2) KS model can be expressed as

Wi(y1,y2) = (472 +x573)

X1 +X2++y1
X1 X2 Y2

This may be seen from a graphical representation:

) ()
O] (&)
(Limaz = 1) (Lmaz = 1)
‘ (O] 21+ 72 = ©
(Limaz) A (Lima >L

@

W(zi) =1, (21 — evmy) W) = Il (4 — 2+ e + e )yn)

Also note the Z, 3 rotation symmetry!



Pullback and pushforward functors

Definition: Let R and S be two (graded) polynomial rings, R — mod and
S — mod the categories of left R- resp. S-modules and homomorphisms,
and let & : R — S be a ring homomorphism. Then the pullback and
pushforward functors along ®

®*:R—mod S S — mod : b,
as follows:

. X € rM — SQrX € sM
N F e Mor(R — mod) + 1s@ f € Mor(S — mod)
R

b, via VreR, xeX,X€ sM: rx:=®(r)x

and analogously for morphisms



Pullback and pushforward functors

Definition: Let R and S be two (graded) polynomial rings, R — mod and
S — mod the categories of left R- resp. S-modules and homomorphisms,
and let & : R — S be a ring homomorphism. Then the pullback and
pushforward functors along ®

®*:R—mod S S — mod : b,
as follows:

. X € rM — SQrX € sM
N F e Mor(R — mod) + 1s@ f € Mor(S — mod)
R

b, via VreR, xeX,X€ sM: rx:=®(r)x

and analogously for morphisms

» Note: for suitable choices of ®, these functors naturally act on MFs
and morphisms of MFs!



Main result: Defect functor semi-ring

» Ansatz: Consider the ring homomprhisms realizing
Wi (yi) = Wi(x;) = xKT3 + xk*3 and the morphism that generates
the Z, 3 rotation:

Y1 x1+ X

L:REC[y,-]—>SEC[X,-]:{
Y2 = X1x2

X1 — X1
Xo e2i7r/(k—4—3)x2

'yk:5—>5:{



Main result: Defect functor semi-ring

» Ansatz: Consider the ring homomprhisms realizing
Wi (yi) = Wi(x;) = xKT3 + xk*3 and the morphism that generates
the Z, 3 rotation:

L:REC[yi]_)SEC[X,-];{ylHXlJ'_)Q

Y2 = X1X2
X1 — X1
Y :S—S: )
Xo e2l7r/(k+3)X2
» The functor D(;) defined as Behr and Fredenhagen, 2011
Dy
R —mod R — mod

v
L
(ve)"

S —mod ——= S — mod



Main result: Defect functor semi-ring

» Ansatz: Consider the ring homomprhisms realizing
Wi (yi) = Wi(x;) = xKT3 + xk*3 and the morphism that generates
the Z, 3 rotation:

L:REC[Yi]%SEC[X,-];{yl'_)X1+X2

Yo = X1X2
X1 — X1
55 .
Yw:S—=S5 {Xz s @2/ (k43)
» The functor D(;) defined as Behr and Fredenhagen, 2011
Da
R —mod R — mod

v
L
(ve)"

S —mod ——= S — mod

generates a semi-ring of functors Dy,), which we name "defect
functors”, according to

Dy © D(ny = D(n—1) ® D(n11)



New RCFT/LG theory "dictionary” example
With the help of the "defect functors” D(,), we can generate all "rational”

MFs from the simplest MFs Q|1 o):
1L, 0)=QLe) := Dy Q0



New RCFT/LG theory "dictionary” example

With the help of the "defect functors” D(,), we can generate all "rational”
MFs from the simplest MFs Q|1 o):

1L, O)=Q|Le = D) Q1)
Checks:

» RR charges are automatically correct, since we may act with D, on
the triangle describing Q. 1), thereby obtaining

Dy ®
c <@;L<+_1L10|K,e>[—1] R QL,e>[1]>

= D)D) Qo) = Qir,e—1) ® QL e41) »

which by induction yields the correct result in comparison with the
RCFT data

» 3 method (NBSF) to generate the correct U(1)-R-charge
representations pj; ¢ via Dy directly from the (unambiguously
defined) rep p|. 0

» explicit computations via SINGULAR for a large number of examples
show agreement of spectra including the U(1)-R-charges
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boundary
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U
ardy branes ‘M rational MFs

Defects ¢ __ ..
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action of
defects
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Cardy branes —
[L,6)

Defect

Ting —* functors

polynomial
MF's Q‘L,m
action of
defect fubctors
Rational
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Outlook

» apply method to other KS models, e.g. the SU (N + 1)/ U(N)
Grassmannian models with

Wk,N(yla"'vyN 1 (Z Xk+N+1>

» 3 deformations of the SUx(3)/U(2) model that leave the defect
functor semi-ring invariant or at least partially preserve it?

sj(xi)—=yj

» relation to conventional "defect technology” for LG theories: obtain
defefct MFs via (¢ : R — S)

RDs = (®4,1)s1s sDgr = (¢*,1) r1r
= new insights in the classes of physically relevant topological
defects for LG theories!

» potential application: Khovanov-Rozanski link homology
computations
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boundary boundary
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D-branes Behr, Fredenhagen 2010/2011 Matrix
New boundary factorizations

RCFT/LG
\-) correspor/ldence U
Cardy branes 4~———b rational MFs

Defects - Defect
¥~ semi-ring — functors



References |

Nicolas Behr and Stefan Fredenhagen. 1112 XXX, 2011.

Ilka Brunner, Manfred Herbst, Wolfgang Lerche, and Bernhard Scheuner.
Landau-Ginzburg realization of open string TFT. JHEP, 11:043, 2003.

John L Cardy. Boundary conditions, fusion rules and the verlinde formula.
Nuclear Physics B, 324(3):581 — 596, 1989. ISSN 0550-3213. doi:
10.1016,/0550-3213(89)90521-X. URL http://www.sciencedirect.
com/science/article/pii/055032138990521X.

Stefan Fredenhagen. Organizing boundary rg flows. Nucl. Phys., B660:
436-472, 2003.

Stefan Fredenhagen and Volker Schomerus. On boundary rg-flows in
coset conformal field theories. Phys. Rev., D67:085001, 2003.

Doron Gepner. Field identification in coset conformal field theories. Phys.
Lett., B222:207, 1989.


http://www.sciencedirect.com/science/article/pii/055032138990521X
http://www.sciencedirect.com/science/article/pii/055032138990521X

References |l

Hiroshi Ishikawa. Boundary states in coset conformal field theories. Nucl.
Phys., B629:209-232, 2002.

Hiroshi Ishikawa and Taro Tani. Novel construction of boundary states in
coset conformal field theories. Nucl. Phys., B649:205-242, 2003.

Hiroshi Ishikawa and Taro Tani. Twisted boundary states in
Kazama-Suzuki models. Nucl. Phys., B678:363-397, 2004. doi:
10.1016/j.nuclphysb.2003.11.011.

Anton Kapustin and Yi Li. D-branes in landau-ginzburg models and
algebraic geometry. JHEP, 12:005, 2003.

Anton Kapustin and Yi Li. Topological Correlators in Landau-Ginzburg
Models with Boundaries. Adv. Theor. Math. Phys., 7:727-749, 2004.

Yoichi Kazama and Hisao Suzuki. New N=2 Superconformal Field
Theories and Superstring Compactification. Nucl.Phys., B321:232,
1989. doi: 10.1016,/0550-3213(89)90250-2.



References |l|

Maxim Kontsevich. unpublished.

Wolfgang Lerche, Cumrun Vafa, and Nicholas P. Warner. Chiral rings in
n=2 superconformal theories. Nucl. Phys., B324:427, 1989.

Gregory W. Moore and Nathan Seiberg. Taming the conformal zoo.
Phys. Lett., B220:422, 1989.

Dmitri Orlov. Triangulated categories of singularities and d-branes in
landau-ginzburg models. 2003.

A. N. Schellekens and S. Yankielowicz. Extended chiral algebras and
modular invariant partition functions. Nucl. Phys., B327:673, 1989.

A. N. Schellekens and S. Yankielowicz. Field identification fixed points in
the coset construction. Nucl. Phys., B334:67, 1990.



References 1V

Sonia Stanciu. D-branes in kazama-suzuki models. Nuclear Physics B,
526(1-3):295 — 310, 1998. ISSN 0550-3213. doi:
10.1016/S0550-3213(98)00402-7. URL http://www.
sciencedirect.com/science/article/pii/S05650321398004027.

N. P. Warner. Supersymmetry in boundary integrable models. Nucl.
Phys., B450:663-694, 1995.

Edward Witten. Non-abelian bosonization in two dimensions.
Communications in Mathematical Physics, 92:455-472, 1984. ISSN
0010-3616. URL http://dx.doi.org/10.1007/BF01215276.
10.1007/BF01215276.


http://www.sciencedirect.com/science/article/pii/S0550321398004027
http://www.sciencedirect.com/science/article/pii/S0550321398004027
http://dx.doi.org/10.1007/BF01215276

	A little RCFT background
	Bulk correspondence
	Introducing (B-type) boundaries
	Data for boundary KS models
	Boundary LG theory data
	Preliminary version of RCFT/LG boundary correspondnce
	Defect functors

