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The previous slide shows a stage, near criticality,
of a simulation of the Ising model for a rectangular
two dimensional lattice. The space is divided into

many domains of constant spin (the two colors that 
are indicated here).



In this lecture we will eventually discuss 
the Potts model (a generalization of the 
Ising model).  The Potts model raises a 
question about techniques that have 
evolved in the knot theory. In these 

techniques, state loop configurations that 
differ by one smoothing, figure in the 

measurement of a homology theory -- 
Khovanov Homology -- that is associated 
with a knot diagram. Our question is -- 
How is Khovanov Homology related to 

the physics of statistical mechanics?

One clue is that these loops are the 
boundaries of regions of constant spin.



We will begin by recalling the quantum mechanical 
framework and how one can place the Jones polynomial

into this framework. This will provide a natural transition to
Khovanov homology, and let us get to

the questions about statistical mechanics models.
So the agenda is

Quantum Information
and 

Knots in Physics.





After all, it is Halloween.

















Quantum Mechanics in a Nutshell

1. (measurement free) Physical processes  
are modeled by unitary transformations

 applied to the state vector: |S> -----> U|S> 

0.  A state of a physical system corresponds to a unit 
vector |S> in a complex vector space.

2. If |S> = z  |1> + z  |2> + ... + z   |n>

in a measurement basis {|1>,|2>,...,|n>}, then
measurement of |S> yields |i> with probability

 |z |^2.
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It follows from this calculation that the question of computing the bracket poly-
nomial for the closure of the three-strand braid b is mathematically equivalent to
the problem of computing the trace of the unitary matrix Φ(b).

The Hadamard Test
In order to (quantum) compute the trace of a unitary matrix U , one can use

the Hadamard test to obtain the diagonal matrix elements 〈ψ|U |ψ〉 of U. The trace
is then the sum of these matrix elements as |ψ〉 runs over an orthonormal basis for
the vector space. We first obtain

1

2
+

1

2
Re〈ψ|U |ψ〉

as an expectation by applying the Hadamard gate H

H |0〉 =
1√
2
(|0〉 + |1〉)

H |1〉 =
1√
2
(|0〉 − |1〉)

to the first qubit of

CU ◦ (H ⊗ 1)|0〉|ψ〉 =
1√
2
(|0〉 ⊗ |ψ〉 + |1〉 ⊗ U |ψ〉.

Here CU denotes controlled U, acting as U when the control bit is |1〉 and the
identity mapping when the control bit is |0〉. We measure the expectation for the
first qubit |0〉 of the resulting state

1

2
(H |0〉 ⊗ |ψ〉 + H |1〉 ⊗ U |ψ〉) =

1

2
((|0〉 + |1〉) ⊗ |ψ〉 + (|0〉 − |1〉) ⊗ U |ψ〉)

=
1

2
(|0〉 ⊗ (|ψ〉 + U |ψ〉) + |1〉 ⊗ (|ψ〉 − U |ψ〉)).

This expectation is

1

2
(〈ψ| + 〈ψ|U †)(|ψ〉 + U |ψ〉) =

1

2
+

1

2
Re〈ψ|U |ψ〉.

The imaginary part is obtained by applying the same procedure to

1√
2
(|0〉 ⊗ |ψ〉 − i|1〉 ⊗ U |ψ〉

This is the method used in [1], and the reader may wish to contemplate its efficiency
in the context of this simple model. Note that the Hadamard test enables this
quantum computation to estimate the trace of any unitary matrix U by repeated
trials that estimate individual matrix entries 〈ψ|U |ψ〉. We shall return to quantum
algorithms for the Jones polynomial and other knot polynomials in a subsequent
paper.

Apply Hadamard Gate

to first qubit of
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The resulting state is
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algorithms for the Jones polynomial and other knot polynomials in a subsequent
paper.

The expectation for |0> is
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The imaginary part is obtained by applying the 
same procedure to
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Step #1:
from the 2x2 matrix
to the 4x4 matrix :

U
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Step #2:
application of on the
NMR product operator :
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Jones Polynomial
“Trefoil":

Jones Polynomial
“Figure-Eight":

Jones Polynomial
“Borromean rings":

- + -A 3A 2A
2 13

+ -A A
8 4

+ -A A
-4-8

+ 4A
0

- + -A 3A 2A
-1-2-3

+ A
0

A is defined as a closed, non-self-intersecting curve
that is embedded in three dimensions.

knot

example: “construction” of the Trefoil knot:

make a
“knot”

fuse the
free ends

make it
“look nice”

start with a rope end up with a Trefoil

J. W. Alexander proved, that any knot can be represented
as a closed braid (polynomial time algorithm)

1 &1 &2
&1
-1 &2

-1

generators of the 3 strand braid group:

radie +%$

It is well known in knot theory, how to obtain the unitary matrix representation
of all generators of a given braid goup (see “Temperley-Lieb algebra” and “path
model representation”). The unitary matrices U and U , corresponding to the

generators and of the 3 strand braid group are shown on the left, where the

variable “ ” is related to the variable “ ” of the Jones polynomial by: .

The unitary matrix representations of and are given by U and U .

The knot or link that was expressed as a product of braid group generators can
therefore also be expressed as a product of the corresponding unitary matrices.

1 2

1 2& &
+

& &
A A

-1 - - -1 1 1

1 2 1 2

Instead of applying the unitary matrix we apply it’s controlled variant .
This matrix is especially suited for NMR quantum computers [4] and other
thermal state expectation value quantum computers: you only have to apply

to the NMR product operator and measure and in order to obtain
the trace of the original matrix .

U, cU

cU I I I
U

1x 1x 1y

.

Independent of the dimension of matrix you only need ONE extra qubit for the
implementation of as compared to the implementation of itself.

U
cU U

The measurement of I I1x 1yand can be accomplished in one single-scan experiment.

All knots and links can be expressed as a product of braid group generators (see
above). Hence the corresponding NMR pulse sequence can also be expressed as
a sequence of NMR pulse sequence blocks, where each block corresponds to the
controlled unitary matrix of one braid group generator.cU .

This modular approach allows for an easy optimization of the NMR pulse
sequences: only a small and limited number of pulse sequence blocks have to
be optimized. .

Comparison of experimental results, theoretical predictions, and simulated ex-
periments, where realisitic inperfections like relaxation, B field inhomogeneity,
and finite length of the pulses are included.

1

.

The Jones Polynomials can be reconstructed out of the NMR experiments by:

For each data point, four single-scan NMR experiments have been performed:
measurement of I I I I1x 1y 1x 1y, measurement of , reference for , and reference for .
If necessary each data point can also be obtained in one single-scan experiment
by measuring amplitude and phase in a referenced setting. .

V (A)=( A ) ( { } A [( A A ) 2])- +tr U - - -
3 ( ) ( ) 2 2 2- -w L I L

L

where: ( ) is the writhe of the knot or link
{ } is determined by the NMR experiments

( ) is the sum of exponents in the braid word
corresponding to the knot or link

w L L
tr U
I L

L

A A A+ -
-4 -12 -16( )

- -A A
2 -2( )
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Abstract In this paper, we give a precise and workable definition of a quantum knot
system, the states of which are called quantum knots. This definition can be viewed as
a blueprint for the construction of an actual physical quantum system. Moreover, this
definition of a quantum knot system is intended to represent the “quantum embodi-
ment” of a closed knotted physical piece of rope. A quantum knot, as a state of this
system, represents the state of such a knotted closed piece of rope, i.e., the particular
spatial configuration of the knot tied in the rope. Associated with a quantum knot sys-
tem is a group of unitary transformations, called the ambient group, which represents
all possible ways of moving the rope around (without cutting the rope, and without
letting the rope pass through itself.) Of course, unlike a classical closed piece of rope,
a quantum knot can exhibit non-classical behavior, such as quantum superposition and
quantum entanglement. This raises some interesting and puzzling questions about the
relation between topological and quantum entanglement. The knot type of a quantum
knot is simply the orbit of the quantum knot under the action of the ambient group.
We investigate quantum observables which are invariants of quantum knot type. We
also study the Hamiltonians associated with the generators of the ambient group, and
briefly look at the quantum tunneling of overcrossings into undercrossings. A basic
building block in this paper is a mosaic system which is a formal (rewriting) system of
symbol strings. We conjecture that this formal system fully captures in an axiomatic
way all of the properties of tame knot theory.
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1 Introduction

The objective of this paper is to set the foundation for a research program on quantum
knots.1

For simplicity of exposition, we will throughout this paper frequently use the term
“knot” to mean either a knot or a link.2

In part 1 of this paper, we create a formal system (K, A) consisting of

(1) A graded set K of symbol strings, called knot mosaics, and
(2) A graded subgroup A, called the knot mosaic ambient group, of the group of all

permutations of the set of knot mosaics K.

We conjecture that the formal system (K, A) fully captures the entire structure of
tame knot theory.

Three examples of knot mosaics are given below:

Each of these knot mosaics is a string made up of the following 11 symbols

called mosaic tiles.
An example of an element in the mosaic ambient group A is the mosaic Reidemeister

1 move illustrated below:

1 A PowerPoint presentation of this paper can be found at http://www.csee.umbc.edu/~lomonaco/Lectures.
html.
2 For references on knot theory, see for example [4,10,13,20].
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Each mosaic is a tensor product of
elementary tiles.
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Quantum knots and mosaics

Here is yet another way of finding quantum knot invariants:

Theorem 3 Let Q
(
K(n), A(n)

)
be a quantum knot system, and let ! be an observable

on the Hilbert space K(n). Let St (!) be the stabilizer subgroup for !, i.e.,

St (!) =
{
U ∈ A(n) : U!U−1 = !

}
.

Then the observable
∑

U∈A(n)/St(!)

U!U−1

is a quantum knot n-invariant, where
∑

U∈A(n)/St(!) U!U−1 denotes a sum over a
complete set of coset representatives for the stabilizer subgroup St (!) of the ambient
group A(n).

Proof The observable
∑

g∈A(n) g!g−1is obviously an quantum knotn-invariant, since

g′
(∑

g∈A(n) g!g−1
)

g′−1 = ∑
g∈A(n) g!g−1 for all g′ ∈ A(n). If we let |St (!)|

denote the order of |St (!)|, and if we let c1, c2, . . . , cp denote a complete set of
coset representatives of the stabilizer subgroup St (!), then

∑p
j=1 cj!c−1

j = 1
|St(!)|∑

g∈A(n) g!g−1 is also a quantum knot invariant. $%

We end this section with an example of a quantum knot invariant:

Example 2 The following observable ! is an example of a quantum knot 4-invariant:

Remark 6 For yet another approach to quantum knot measurement, we refer the reader
to the brief discussion on quantum knot tomography found in item (11) in the conclu-
sion of this paper.

4 Conclusion: Open questions and future directions

There are many possible open questions and future directions for research. We mention
only a few.
(1) What is the exact structure of the ambient group A(n) and its direct limit

A = lim−→ A(n).

Can one write down an explicit presentation for A(n)? for A? The fact that the
ambient group A(n) is generated by involutions suggests that it may be a Coxeter
group. Is it a Coxeter group?
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Figure 2 - The Reidemeister Moves.

That is, two knots are regarded as equivalent if one embedding can be ob-
tained from the other through a continuous family of embeddings of circles
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[16], and Bar-Natan’s emphasis on tangle cobordisms [2]. We use similar considera-

tions in our paper [10].

Two key motivating ideas are involved in finding the Khovanov invariant. First

of all, one would like to categorify a link polynomial such as 〈K〉. There are many
meanings to the term categorify, but here the quest is to find a way to express the link

polynomial as a graded Euler characteristic 〈K〉 = χq〈H(K)〉 for some homology
theory associated with 〈K〉.

The bracket polynomial [7] model for the Jones polynomial [4, 5, 6, 17] is usually

described by the expansion

〈 〉 = A〈 〉 + A−1〈 〉 (4)

and we have

〈K ©〉 = (−A2 − A−2)〈K〉 (5)

〈 〉 = (−A3)〈 〉 (6)

〈 〉 = (−A−3)〈 〉 (7)

Letting c(K) denote the number of crossings in the diagramK, if we replace 〈K〉
by A−c(K)〈K〉, and then replace A by −q−1, the bracket will be rewritten in the fol-
lowing form:

〈 〉 = 〈 〉 − q〈 〉 (8)

with 〈©〉 = (q+q−1). It is useful to use this form of the bracket state sum for the sake
of the grading in the Khovanov homology (to be described below). We shall continue

to refer to the smoothings labeled q (or A−1 in the original bracket formulation) as

B-smoothings. We should further note that we use the well-known convention of en-
hanced states where an enhanced state has a label of 1 or X on each of its component

loops. We then regard the value of the loop q + q−1 as the sum of the value of a circle

labeled with a 1 (the value is q) added to the value of a circle labeled with an X (the

value is q−1).We could have chosen the more neutral labels of +1 and −1 so that

q+1 ⇐⇒ +1 ⇐⇒ 1

and

q−1 ⇐⇒ −1 ⇐⇒ X,

but, since an algebra involving 1 and X naturally appears later, we take this form of

labeling from the beginning.
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(ii) 

= A(-A4 - A-4) + A-'(-A-3)2 

( T )  = -A5 - A-3 + A-7 

w(T) = 3 (independent of the choice of orientation 

since T is a knot) 

... LT = ( - A 3 ) - 3 ( T )  

- - -A-9(-A5 - A-3 + A-') 

LT = A-4 + A-12 - A-16 .. 

.*. 1 s ~ -  = A4 + A12 - A16. 

Since CT. # CT, we conclude that the trefoil is not ambient isotopic to its mirror 

image. Incidentally, we have also shown that the trefoil is knotted and that the 

link L is linked. 

(iii) (The Figure Eight Knot) 

Bracket Polynomial of the Trefoil Knot



Let c(K) = number of crossings on link K.

Form A       <K> and replace A     by -q    .
-c(K)

Then the skein relation for <K> will 
be replaced by:
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The Khovanov  Cubical Organization of Bracket 
States



We make a Hilbert space whose basis is a set of
(enhanced) states of the bracket polynomial for a 

given knot diagram K.
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with a 1 (the value is q) added to the value of a circle labeled with anX (the value is q−1).We could have
chosen the more neutral labels of +1 and −1 so that

q+1 ⇐⇒ +1 ⇐⇒ 1

and

q−1 ⇐⇒ −1 ⇐⇒ X,

but, since an algebra involving 1 and X naturally appears later, we take this form of labeling from the

beginning.

To see how the Khovanov grading arises, consider the form of the expansion of this version of the

bracket polynonmial in enhanced states. We have the formula as a sum over enhanced states s :

〈K〉 =
∑

s

(−1)nB(s)qj(s)

where nB(s) is the number of B-type smoothings in s, λ(s) is the number of loops in s labeled 1 minus
the number of loops labeled X, and j(s) = nB(s) + λ(s). This can be rewritten in the following form:

〈K〉 =
∑

i ,j

(−1)iqjdim(Cij)

where we define Cij to be the linear span (over k = Z/2Z as we will work with mod 2 coefficients) of
the set of enhanced states with nB(s) = i and j(s) = j. Then the number of such states is the dimension
dim(Cij).

We would like to have a bigraded complex composed of the Cij with a differential

∂ : Cij −→ Ci+1 j .

The differential should increase the homological grading i by 1 and preserve the quantum grading j. Then
we could write

〈K〉 =
∑

j

qj
∑

i

(−1)idim(Cij) =
∑

j

qjχ(C• j),

where χ(C• j) is the Euler characteristic of the subcomplex C• j for a fixed value of j.

This formula would constitute a categorification of the bracket polynomial. Below, we shall see how the

original Khovanov differential ∂ is uniquely determined by the restriction that j(∂s) = j(s) for each
enhanced state s. Since j is preserved by the differential, these subcomplexes C• j have their own Euler

characteristics and homology. We have

χ(H(C• j)) = χ(C• j)

where H(C• j) denotes the homology of the complex C• j . We can write

〈K〉 =
∑

j

qjχ(H(C• j)).

The last formula expresses the bracket polynomial as a graded Euler characteristic of a homology theory

associated with the enhanced states of the bracket state summation. This is the categorification of the

bracket polynomial. Khovanov proves that this homology theory is an invariant of knots and links (via the

Reidemeister moves of Figure 1), creating a new and stronger invariant than the original Jones polynomial.
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Enhanced States
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let -1 be denoted by X and +1 be denoted by 1.

(The module V will be generated by 1 and X.)
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and

j(∂|s〉) = j(|s〉)

for each enhanced state s. In the next section, we shall explain how the boundary operator
is constructed.

2. Lemma. By defining U : C(K) −→ C(K) as in the previous section, via

U |s〉 = (−1)i(s)qj(s)|s〉,

we have the following basic relationship between U and the boundary operator ∂ :

U∂ + ∂U = 0.

Proof. This follows at once from the definition of U and the fact that ∂ preserves j and
increases i to i + 1. //

3. From this Lemma we conclude that the operator U acts on the homology of C(K). We
can regard H(C(K)) = Ker(∂)/Image(∂) as a new Hilbert space on which the unitary
operator U acts. In this way, the Khovanov homology and its relationship with the Jones

polynomial has a natural quantum context.

4. For a fixed value of j,
C•,j = ⊕iCi,j

is a subcomplex of C(K) with the boundary operator ∂. Consequently, we can speak of
the homology H(C•,j). Note that the dimension of Cij is equal to the number of enhanced

states |s〉 with i = i(s) and j = j(s). Consequently, we have

〈K〉 =
∑

s

qj(s)(−1)i(s) =
∑

j

qj
∑

i

(−1)idim(Cij)

=
∑

j

qjχ(C•,j) =
∑

j

qjχ(H(C•,j)).

Here we use the definition of the Euler characteristic of a chain complex

χ(C•,j) =
∑

i

(−1)idim(Cij)

and the fact that the Euler characteristic of the complex is equal to the Euler characteristic

of its homology. The quantum amplitude associated with the operator U is given in terms

of the Euler characteristics of the Khovanov homology of the linkK.

〈K〉 = 〈ψ|U |ψ〉 =
∑

j

qjχ(H(C•,j(K))).

7

Enhanced State Sum Formula for the Bracket



A Quantum Statistical Model for the Bracket 
Polynonmial.

Let C(K) denote a Hilbert space
with basis |s> where s runs over the 

enhanced states of a knot or link diagram K.

One advantage of the expression of the bracket polynomial via enhanced states is that it is

now a sum of monomials. We shall make use of this property throughout the rest of the paper.

3 Quantum Statistics and the Jones Polynomial

We now use the enhanced state summation for the bracket polynomial with variable q to give a
quantum formulation of the state sum. Let q be on the unit circle in the complex plane. (This is
equivalent to letting the original bracket variable A be on the unit circle and equivalent to letting

the Jones polynmial variable t be on the unit circle.) Let C(K) denote the complex vector space
with orthonormal basis {|s〉 }where s runs over the enhanced states of the diagramK. The vector
space C(K) is the (finite dimensional) Hilbert space for our quantum formulation of the Jones

polynomial. While it is customary for a Hilbert space to be written with the letter H, we do not
follow that convention here, due to the fact that we shall soon regard C(K) as a chain complex
and take its homology. One can hardly avoid usingH for homology.

With q on the unit circle, we define a unitary transformation

U : C(K) −→ C(K)

by the formula

U |s〉 = (−1)i(s)qj(s)|s〉

for each enhanced state s. Here i(s) and j(s) are as defined in the previous section of this paper.

Let

|ψ〉 =
∑

s

|s〉.

The state vector |ψ〉 is the sum over the basis states of our Hilbert space C(K). For convenience,
we do not normalize |ψ〉 to length one in the Hilbert space C(K).We then have the

Lemma. The evaluation of the bracket polynomial is given by the following formula

〈K〉 = 〈ψ|U |ψ〉.

Proof.

〈ψ|U |ψ〉 =
∑

s′

∑

s

〈s′|(−1)i(s)qj(s)|s〉 =
∑

s′

∑

s

(−1)i(s)qj(s)〈s′|s〉

=
∑

s

(−1)i(s)qj(s) = 〈K〉,

since

〈s′|s〉 = δ(s, s′)

where δ(s, s′) is the Kronecker delta, equal to 1 when s = s′ and equal to 0 otherwise. //

4

One advantage of the expression of the bracket polynomial via enhanced states is that it is

now a sum of monomials. We shall make use of this property throughout the rest of the paper.

3 Quantum Statistics and the Jones Polynomial

We now use the enhanced state summation for the bracket polynomial with variable q to give a
quantum formulation of the state sum. Let q be on the unit circle in the complex plane. (This is
equivalent to letting the original bracket variable A be on the unit circle and equivalent to letting

the Jones polynmial variable t be on the unit circle.) Let C(K) denote the complex vector space
with orthonormal basis {|s〉 }where s runs over the enhanced states of the diagramK. The vector
space C(K) is the (finite dimensional) Hilbert space for our quantum formulation of the Jones

polynomial. While it is customary for a Hilbert space to be written with the letter H, we do not
follow that convention here, due to the fact that we shall soon regard C(K) as a chain complex
and take its homology. One can hardly avoid usingH for homology.

With q on the unit circle, we define a unitary transformation

U : C(K) −→ C(K)

by the formula

U |s〉 = (−1)i(s)qj(s)|s〉

for each enhanced state s. Here i(s) and j(s) are as defined in the previous section of this paper.

Let

|ψ〉 =
∑

s

|s〉.

The state vector |ψ〉 is the sum over the basis states of our Hilbert space C(K). For convenience,
we do not normalize |ψ〉 to length one in the Hilbert space C(K).We then have the

Lemma. The evaluation of the bracket polynomial is given by the following formula

〈K〉 = 〈ψ|U |ψ〉.

Proof.

〈ψ|U |ψ〉 =
∑

s′

∑

s

〈s′|(−1)i(s)qj(s)|s〉 =
∑

s′

∑

s

(−1)i(s)qj(s)〈s′|s〉

=
∑

s

(−1)i(s)qj(s) = 〈K〉,

since

〈s′|s〉 = δ(s, s′)

where δ(s, s′) is the Kronecker delta, equal to 1 when s = s′ and equal to 0 otherwise. //

4

q  is chosen on the unit circle in the 
complex plane.

We define a unitary transformation.
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The state vector |ψ〉 is the sum over the basis states of our Hilbert space C(K). For convenience,
we do not normalize |ψ〉 to length one in the Hilbert space C(K).We then have the

Lemma. The evaluation of the bracket polynomial is given by the following formula
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∑
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∑

s
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∑

s

(−1)i(s)qj(s) = 〈K〉,

since

〈s′|s〉 = δ(s, s′)

where δ(s, s′) is the Kronecker delta, equal to 1 when s = s′ and equal to 0 otherwise. //
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This gives a new quantum algorithm for the 
Jones polynomial (via Hadamard Test).

<K> = Trace(U).



Khovanov Homology - Jones Polynomial as an
Euler Characteristic[16], and Bar-Natan’s emphasis on tangle cobordisms [2]. We use similar considera-

tions in our paper [10].

Two key motivating ideas are involved in finding the Khovanov invariant. First

of all, one would like to categorify a link polynomial such as 〈K〉. There are many
meanings to the term categorify, but here the quest is to find a way to express the link

polynomial as a graded Euler characteristic 〈K〉 = χq〈H(K)〉 for some homology
theory associated with 〈K〉.

The bracket polynomial [7] model for the Jones polynomial [4, 5, 6, 17] is usually

described by the expansion

〈 〉 = A〈 〉 + A−1〈 〉 (4)

and we have

〈K ©〉 = (−A2 − A−2)〈K〉 (5)

〈 〉 = (−A3)〈 〉 (6)

〈 〉 = (−A−3)〈 〉 (7)

Letting c(K) denote the number of crossings in the diagramK, if we replace 〈K〉
by A−c(K)〈K〉, and then replace A by −q−1, the bracket will be rewritten in the fol-
lowing form:

〈 〉 = 〈 〉 − q〈 〉 (8)

with 〈©〉 = (q+q−1). It is useful to use this form of the bracket state sum for the sake
of the grading in the Khovanov homology (to be described below). We shall continue

to refer to the smoothings labeled q (or A−1 in the original bracket formulation) as

B-smoothings. We should further note that we use the well-known convention of en-
hanced states where an enhanced state has a label of 1 or X on each of its component

loops. We then regard the value of the loop q + q−1 as the sum of the value of a circle

labeled with a 1 (the value is q) added to the value of a circle labeled with an X (the

value is q−1).We could have chosen the more neutral labels of +1 and −1 so that

q+1 ⇐⇒ +1 ⇐⇒ 1

and

q−1 ⇐⇒ −1 ⇐⇒ X,

but, since an algebra involving 1 and X naturally appears later, we take this form of

labeling from the beginning.

5

We will formulate Khovanov 
Homology

in the context of our quantum 
statistical model for the bracket 

polynomial.



View the next slide as a category.

The cubical shape of this category suggests 
making a homology theory.

CATEGORIFICATION
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The Khovanov  Category



<AAA>

<BAA>

<ABA>

<AAB>

<BBA>

<BAB>

<ABB>

<BBB>



In order to make a non-trivial homology theory
we need a functor from this cubical category of states

to a module category. 

Each state loop will map to a module V.  

Unions of loops will map to 
tenor products of this module.

Functor : Cubical Category -------> Module Category.



Module V

m

The Functor from the cubical category to the module 
category demands multiplication and comultiplication in 

the module.



We will construct the differential in this complex first for mod-2 coefficients. The differential is based
on regarding two states as adjacent if one differs from the other by a single smoothing at some site. Thus

if (s, τ) denotes a pair consisting in an enhanced state s and site τ of that state with τ of type A, then
we consider all enhanced states s′ obtained from s by smoothing at τ and relabeling only those loops that
are affected by the resmoothing. Call this set of enhanced states S′[s, τ ]. Then we shall define the partial
differential ∂τ (s) as a sum over certain elements in S′[s, τ ], and the differential by the formula

∂(s) =
∑

τ

∂τ (s)

with the sum over all type A sites τ in s. It then remains to see what are the possibilities for ∂τ (s) so that
j(s) is preserved.

Note that if s′ ∈ S′[s, τ ], then nB(s′) = nB(s) + 1. Thus

j(s′) = nB(s′) + λ(s′) = 1 + nB(s) + λ(s′).

From this we conclude that j(s) = j(s′) if and only if λ(s′) = λ(s) − 1. Recall that

λ(s) = [s : +] − [s : −]

where [s : +] is the number of loops in s labeled +1, [s : −] is the number of loops labeled −1 (same as
labeled with X) and j(s) = nB(s) + λ(s).

Proposition. The partial differentials ∂τ (s) are uniquely determined by the condition that j(s′) = j(s)
for all s′ involved in the action of the partial differential on the enhanced state s. This unique form of the
partial differential can be described by the following structures of multiplication and comultiplication on

the algebra A = k[X]/(X2) where k = Z/2Z for mod-2 coefficients, or k = Z for integral coefficients.

1. The element 1 is a multiplicative unit andX2 = 0.

2. ∆(1) = 1 ⊗ X + X ⊗ 1 and ∆(X) = X ⊗ X.

These rules describe the local relabeling process for loops in a state. Multiplication corresponds to the

case where two loops merge to a single loop, while comultiplication corresponds to the case where one

loop bifurcates into two loops.

(The proof is omitted.)

Partial differentials are defined on each enhanced state s and a site τ of typeA in that state. We consider
states obtained from the given state by smoothing the given site τ . The result of smoothing τ is to produce
a new state s′ with one more site of type B than s. Forming s′ from s we either amalgamate two loops to
a single loop at τ , or we divide a loop at τ into two distinct loops. In the case of amalgamation, the new
state s acquires the label on the amalgamated circle that is the product of the labels on the two circles that
are its ancestors in s. This case of the partial differential is described by the multiplication in the algebra.
If one circle becomes two circles, then we apply the coproduct. Thus if the circle is labeled X , then the
resultant two circles are each labeledX corresponding to∆(X) = X⊗X . If the orginal circle is labeled 1
then we take the partial boundary to be a sum of two enhanced states with labels 1 andX in one case, and

labels X and 1 in the other case, on the respective circles. This corresponds to ∆(1) = 1 ⊗ X + X ⊗ 1.

7

The boundary is a sum of partial differentials
corresponding to resmoothings on the states.

Each state loop
is a module.

A collection of state 
loops corresponds to
 a tensor product of 

these modules.
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Figure 2: SaddlePoints and State Smoothings

the relationships between Frobenius algebras and the surface cobordism category. The

proof of invariance of Khovanov homology with respect to the Reidemeister moves

(respecting grading changes) will not be given here. See [12, 1, 2]. It is remarkable

that this version of Khovanov homology is uniquely specified by natural ideas about

adjacency of states in the bracket polynomial.

Remark on Integral Differentials. Choose an ordering for the crossings in the link

diagram K and denote them by 1, 2, · · ·n. Let s be any enhanced state of K and let

∂i(s) denote the chain obtained from s by applying a partial boundary at the i-th site
of s. If the i-th site is a smoothing of type A−1, then ∂i(s) = 0. If the i-th site is

!m

F G H

Figure 3: Surface Cobordisms
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The commutation of the partial boundaries demands 
a structure of Frobenius algebra for the algebra 

associated to a state circle. 



It turns out that one can take the algebra
generated by 1 and X with

X   = 0   and  
 

that the existence of a bigraded complex of this type allows us to further
write:

〈K〉 =
X

j

qj
X

i

(−1)idim(Cij) =
X

j

qjχ(C• j),

where χ(C• j) is the Euler characteristic of the subcomplex C• j for a fixed
value of j. Since j is preserved by the differential, these subcomplexes have
their own Euler characteristics and homology. We can write

〈K〉 =
X

j

qjχ(H(C• j)),

where H(C• j) denotes the homology of this complex. Thus our last for-
mula expresses the bracket polynomial as a graded Euler characteristic of a
homology theory associated with the enhanced states of the bracket state
summation. This is the categorification of the bracket polynomial. Kho-
vanov proves that this homology theory is an invariant of knots and links,
creating a new and stronger invariant than the original Jones polynomial.

We explain the differential in this complex for mod-2 coefficients and
leave it to the reader to see the references for the rest. The differential
is defined via the algebra A = k[X]/(x2) so that X2 = 0 with coproduct
∆ : A −→ A⊗A defined by ∆(X) = X ⊗ X and ∆(1) = 1 ⊗ X + X ⊗ 1.
Partial differentials (which are defined on an enhanced state with a chosen
site, whereas the differential is a sum of these mappings) are defined on
each enhanced state s and a site κ of type A in that state. We consider
states obtained from the given state by smoothing the given site κ. The
result of smoothing κ is to produce a new state s′ with one more site of
type B than s. Forming s′ from s we either amalgamate two loops to a
single loop at κ, or we divide a loop at κ into two distinct loops. In the case
of amalgamation, the new state s acquires the label on the amalgamated
circle that is the product of the labels on the two circles that are its
ancestors in s. That is, m(1⊗X) = X and m(X⊗X) = 0. Thus this case
of the partial differential is described by the multiplication in the algebra.
If one circle becomes two circles, then we apply the coproduct. Thus if
the circle is labelled X, then the resultant two circles are each labelled X
corresponding to ∆(X) = X ⊗ X. If the orginal circle is labelled 1 then
we take the partial boundary to be a sum of two enhanced states with
labels 1 and X in one case, and labels X and 1 in the other case on the
respective circles. This corresponds to ∆(1) = 1 ⊗ X + X ⊗ 1. Modulo
two, the differential of an enhanced state is the sum, over all sites of type
A in the state, of the partial differential at these sites. It is not hard
to verify directly that the square of the differential mapping is zero and
that it behaves as advertised, keeping j(s) constant. There is more to say
about the nature of this construction with respect to Frobenius algebras
and tangle cobordisms. See [Kh, BN, BN2]

Here we consider bigraded complexes Cij with height (homological
grading) i and quantum grading j. In the unnormalized Khovanov complex
[[K]] the index i is the number of B-smoothings of the bracket, and for
every enhanced state, the index j is equal to the number of components

8

The chain complex is then generated by 
enhanced states with loop labels 1 and X.

2



with a 1 (the value is q) added to the value of a circle labeled with anX (the value is q−1).We could have
chosen the more neutral labels of +1 and −1 so that

q+1 ⇐⇒ +1 ⇐⇒ 1

and

q−1 ⇐⇒ −1 ⇐⇒ X,

but, since an algebra involving 1 and X naturally appears later, we take this form of labeling from the

beginning.

To see how the Khovanov grading arises, consider the form of the expansion of this version of the

bracket polynonmial in enhanced states. We have the formula as a sum over enhanced states s :

〈K〉 =
∑

s

(−1)nB(s)qj(s)

where nB(s) is the number of B-type smoothings in s, λ(s) is the number of loops in s labeled 1 minus
the number of loops labeled X, and j(s) = nB(s) + λ(s). This can be rewritten in the following form:

〈K〉 =
∑

i ,j

(−1)iqjdim(Cij)

where we define Cij to be the linear span (over k = Z/2Z as we will work with mod 2 coefficients) of
the set of enhanced states with nB(s) = i and j(s) = j. Then the number of such states is the dimension
dim(Cij).

We would like to have a bigraded complex composed of the Cij with a differential

∂ : Cij −→ Ci+1 j .

The differential should increase the homological grading i by 1 and preserve the quantum grading j. Then
we could write

〈K〉 =
∑

j

qj
∑

i

(−1)idim(Cij) =
∑

j

qjχ(C• j),

where χ(C• j) is the Euler characteristic of the subcomplex C• j for a fixed value of j.

This formula would constitute a categorification of the bracket polynomial. Below, we shall see how the

original Khovanov differential ∂ is uniquely determined by the restriction that j(∂s) = j(s) for each
enhanced state s. Since j is preserved by the differential, these subcomplexes C• j have their own Euler

characteristics and homology. We have

χ(H(C• j)) = χ(C• j)

where H(C• j) denotes the homology of the complex C• j . We can write

〈K〉 =
∑

j

qjχ(H(C• j)).

The last formula expresses the bracket polynomial as a graded Euler characteristic of a homology theory

associated with the enhanced states of the bracket state summation. This is the categorification of the

bracket polynomial. Khovanov proves that this homology theory is an invariant of knots and links (via the

Reidemeister moves of Figure 1), creating a new and stronger invariant than the original Jones polynomial.

6
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i(s) = n  (s) = number of B-smoothings in the 
state s.B
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= number of +1 loops minus number of -1 loops.

C ij = module generated by enhanced states 
with i =n   and j as above.B

and

j(∂|s〉) = j(|s〉)

for each enhanced state s. In the next section, we shall explain how the boundary operator
is constructed.

2. Lemma. By defining U : C(K) −→ C(K) as in the previous section, via

U |s〉 = (−1)i(s)qj(s)|s〉,

we have the following basic relationship between U and the boundary operator ∂ :

U∂ + ∂U = 0.

Proof. This follows at once from the definition of U and the fact that ∂ preserves j and
increases i to i + 1. //

3. From this Lemma we conclude that the operator U acts on the homology of C(K). We
can regard H(C(K)) = Ker(∂)/Image(∂) as a new Hilbert space on which the unitary
operator U acts. In this way, the Khovanov homology and its relationship with the Jones

polynomial has a natural quantum context.

4. For a fixed value of j,
C•,j = ⊕iCi,j

is a subcomplex of C(K) with the boundary operator ∂. Consequently, we can speak of
the homology H(C•,j). Note that the dimension of Cij is equal to the number of enhanced

states |s〉 with i = i(s) and j = j(s). Consequently, we have

〈K〉 =
∑

s

qj(s)(−1)i(s) =
∑

j

qj
∑

i

(−1)idim(Cij)

=
∑

j

qjχ(C•,j) =
∑

j

qjχ(H(C•,j)).

Here we use the definition of the Euler characteristic of a chain complex

χ(C•,j) =
∑

i

(−1)idim(Cij)

and the fact that the Euler characteristic of the complex is equal to the Euler characteristic

of its homology. The quantum amplitude associated with the operator U is given in terms

of the Euler characteristics of the Khovanov homology of the linkK.

〈K〉 = 〈ψ|U |ψ〉 =
∑

j

qjχ(H(C•,j(K))).
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Enhanced State Sum Formula for the Bracket
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With

and

j(∂|s〉) = j(|s〉)

for each enhanced state s. In the next section, we shall explain how the boundary operator
is constructed.

2. Lemma. By defining U : C(K) −→ C(K) as in the previous section, via

U |s〉 = (−1)i(s)qj(s)|s〉,

we have the following basic relationship between U and the boundary operator ∂ :

U∂ + ∂U = 0.

Proof. This follows at once from the definition of U and the fact that ∂ preserves j and
increases i to i + 1. //

3. From this Lemma we conclude that the operator U acts on the homology of C(K). We
can regard H(C(K)) = Ker(∂)/Image(∂) as a new Hilbert space on which the unitary
operator U acts. In this way, the Khovanov homology and its relationship with the Jones

polynomial has a natural quantum context.

4. For a fixed value of j,
C•,j = ⊕iCi,j

is a subcomplex of C(K) with the boundary operator ∂. Consequently, we can speak of
the homology H(C•,j). Note that the dimension of Cij is equal to the number of enhanced

states |s〉 with i = i(s) and j = j(s). Consequently, we have

〈K〉 =
∑

s

qj(s)(−1)i(s) =
∑

j

qj
∑

i

(−1)idim(Cij)

=
∑

j

qjχ(C•,j) =
∑

j

qjχ(H(C•,j)).

Here we use the definition of the Euler characteristic of a chain complex

χ(C•,j) =
∑

i

(−1)idim(Cij)

and the fact that the Euler characteristic of the complex is equal to the Euler characteristic

of its homology. The quantum amplitude associated with the operator U is given in terms

of the Euler characteristics of the Khovanov homology of the linkK.

〈K〉 = 〈ψ|U |ψ〉 =
∑

j

qjχ(H(C•,j(K))).
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Eigenspace Picture

be a unitary operator that satisfies the equation U∂+∂U = 0.We do not assume a second grading
j as occurs in the Khovanov homology. However, since U is unitary, it follows [22] that there is a

basis for C in which U is diagonal. Let B = {|s〉} denote this basis. Let λs denote the eigenvalue

of U corresponding to |s〉 so that U |s〉 = λs|s〉. Let αs,s′ be the matrix element for ∂ so that

∂|s〉 =
∑

s′
αs,s′|s′〉

where s′ runs over a set of basis elements so that i(s′) = i(s) + 1.

Lemma. With the above conventions, we have that for |s′〉 a basis element such that αs,s′ "= 0
then λs′ = −λs.

Proof. Note that

U∂|s〉 = U(
∑

s′
αs,s′|s′〉) =

∑

s′
αs,s′λs′|s′〉

while

∂U |s〉 = ∂λs|s〉 =
∑

s′
αs,s′λs|s′〉.

Since U∂+∂U = 0, the conclusion of the Lemma follows from the independence of the elements
in the basis for the Hilbert space. //

In this way we see that eigenvalues will propagate forward from C0 with alternating signs ac-

cording to the appearance of successive basis elements in the boundary formulas for the chain

complex. Various states of affairs are possible in general, with new eigenvaluues starting at some

Ck for k > 0. The simplest state of affairs would be if all the possible eigenvalues (up to multi-
plication by −1) for U occurred in C0 so that

C0 = ⊕λC0
λ

where λ runs over all the distinct eigenvalues of U restricted to C0, and C0
λ is spanned by all

|s〉 in C0 with U |s〉 = λ|s〉. Let us take the further assumption that for each λ as above, the
subcomplexes

C•
λ : C0

λ −→ C1
−λ −→ C2

+λ −→ · · · Cn
(−1)nλ

have C = ⊕λC•
λ as their direct sum. With this assumption about the chain complex, define

|ψ〉 =
∑

s |s〉 as before, with |s〉 running over the whole basis for C. Then it follows just as in the
beginning of this section that

〈ψ|U |ψ〉 =
∑

λ

λχ(H(C•
λ)).

Here χ denotes the Euler characteristic of the homology. The point is, that this formula for

〈ψ|U |ψ〉 takes exactly the form we had for the special case of Khovanov homology (with eigen-
values (−1)iqj), but here the formula occurs just in terms of the eigenspace decomposition of the

unitary transformation U in relation to the chain complex. Clearly there is more work to be done

here and we will return to it in a subsequent paper.
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unitary transformation U in relation to the chain complex. Clearly there is more work to be done

here and we will return to it in a subsequent paper.
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We have interpreted the bracket polynomial as a 
quantum amplitude by making a Hilbert space C(K) 

whose basis is the collection of enhanced states of the 
bracket.

This space C(K) is naturally intepreted as the 
chain space for the Khovanov homology 
associated with the bracket polynomial. 

The homology and the unitary transformation U
speak to one another via the formula

One advantage of the expression of the bracket polynomial via enhanced states is that it is

now a sum of monomials. We shall make use of this property throughout the rest of the paper.

3 Quantum Statistics and the Jones Polynomial

We now use the enhanced state summation for the bracket polynomial with variable q to give a
quantum formulation of the state sum. Let q be on the unit circle in the complex plane. (This is
equivalent to letting the original bracket variable A be on the unit circle and equivalent to letting

the Jones polynmial variable t be on the unit circle.) Let C(K) denote the complex vector space
with orthonormal basis {|s〉 }where s runs over the enhanced states of the diagramK. The vector
space C(K) is the (finite dimensional) Hilbert space for our quantum formulation of the Jones

polynomial. While it is customary for a Hilbert space to be written with the letter H, we do not
follow that convention here, due to the fact that we shall soon regard C(K) as a chain complex
and take its homology. One can hardly avoid usingH for homology.

With q on the unit circle, we define a unitary transformation

U : C(K) −→ C(K)

by the formula

U |s〉 = (−1)i(s)qj(s)|s〉

for each enhanced state s. Here i(s) and j(s) are as defined in the previous section of this paper.

Let

|ψ〉 =
∑

s

|s〉.

The state vector |ψ〉 is the sum over the basis states of our Hilbert space C(K). For convenience,
we do not normalize |ψ〉 to length one in the Hilbert space C(K).We then have the

Lemma. The evaluation of the bracket polynomial is given by the following formula

〈K〉 = 〈ψ|U |ψ〉.

Proof.

〈ψ|U |ψ〉 =
∑

s′

∑

s

〈s′|(−1)i(s)qj(s)|s〉 =
∑

s′

∑

s

(−1)i(s)qj(s)〈s′|s〉

=
∑

s

(−1)i(s)qj(s) = 〈K〉,

since

〈s′|s〉 = δ(s, s′)

where δ(s, s′) is the Kronecker delta, equal to 1 when s = s′ and equal to 0 otherwise. //

4

and

j(∂|s〉) = j(|s〉)

for each enhanced state s. In the next section, we shall explain how the boundary operator
is constructed.

2. Lemma. By defining U : C(K) −→ C(K) as in the previous section, via

U |s〉 = (−1)i(s)qj(s)|s〉,

we have the following basic relationship between U and the boundary operator ∂ :

U∂ + ∂U = 0.

Proof. This follows at once from the definition of U and the fact that ∂ preserves j and
increases i to i + 1. //

3. From this Lemma we conclude that the operator U acts on the homology of C(K). We
can regard H(C(K)) = Ker(∂)/Image(∂) as a new Hilbert space on which the unitary
operator U acts. In this way, the Khovanov homology and its relationship with the Jones

polynomial has a natural quantum context.

4. For a fixed value of j,
C•,j = ⊕iCi,j

is a subcomplex of C(K) with the boundary operator ∂. Consequently, we can speak of
the homology H(C•,j). Note that the dimension of Cij is equal to the number of enhanced

states |s〉 with i = i(s) and j = j(s). Consequently, we have

〈K〉 =
∑

s

qj(s)(−1)i(s) =
∑

j

qj
∑

i

(−1)idim(Cij)

=
∑

j

qjχ(C•,j) =
∑

j

qjχ(H(C•,j)).

Here we use the definition of the Euler characteristic of a chain complex

χ(C•,j) =
∑

i

(−1)idim(Cij)

and the fact that the Euler characteristic of the complex is equal to the Euler characteristic

of its homology. The quantum amplitude associated with the operator U is given in terms

of the Euler characteristics of the Khovanov homology of the linkK.

〈K〉 = 〈ψ|U |ψ〉 =
∑

j

qjχ(H(C•,j(K))).
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Questions

We have shown how Khovanov homology fits
into the context of quantum information related to

the Jones polynomial and how the polynomial is
replaced in this context by a unitary transformation U

on the Hilbert space of the model.  This transformation U
acts on the homology, and its eigenspaces give a natural
decomposition of the homology that is related to the 

quantum amplitude corresponding to the Jones polynomial.
The states of the model are intensely 

combinatorial, related to the 
representation of the knot or link.

How can this formulation be used in 
quantum information theory and in 

statistical mechanics?!



Potts Model and 
Statistical Mechanics



Partition Function
Recall that the partition function of a physical

system has the form of the sum over all states s 
of the system the quantity 

exp[(J/kT)E(s)]

where

J = +1 or -1 (ferromagnetic or antiferromagnetic models)

k = Boltzmann’s constant

T = Temperature
E(s) = energy of the state s



In the Potts model, one has a graph G
and assigns labels (spins, charges) to each

node of the graph from a label set
{1,2,...,Q}.

A state s is such a labeling.
The energy E(s) is equal to the

number of edges in the graph where the
endpoints of the edge receive the same 

label.

Potts Model

For Q = 2, the Potts model is equivalent to the 
Ising model. The Ising model was shown by Osager 

to have a phase transition in the limit of square 
planar lattices ( in the the 1940’s).



The partition function                   for the 
Q-state Potts model on a graph G is given by the 

dichromatic polynomial

where 

In [8, 9] it is shown that the dichromatic polynomial Z[G](v, Q) for a plane graph
can be expressed in terms of a bracket state summation of the form

{ } = { } + Q− 1

2 v{ } (9)

with

{©} = Q
1

2 .

Here

Z[G](v, Q) = QN/2{K(G)}

where K(G) is an alternating link diagram associated with the plane graph G so that

the projection of K(G) to the plane is a medial diagram for the graph. Here we use
the opposite convention from [9] in associating crossings to edges in the graph. We set

K(G) so that smoothingK(G) along edges of the graph give rise to B-smoothings of
K(G). See Figure 4. The formula above, in bracket expansion form, is derived from
the graphical contraction-deletion formula by translating first to the medial graph as

indicated in the formulas below:

Z[ ] = Z[ ] + vZ[ ].

Z[R " K] = QZ[K].

Here the shaded medial graph is indicated by the shaded glyphs in these formulas. The

medial graph is obtained by placing a crossing at each edge ofG and then connecting all
these crossings around each face ofG as shown in Figure ?. The medial can be checker-

board shaded in relation to the original graph G, and encoded with a crossing structure

so that it represents a link diagram. R denotes a connected shaded region in the shaded

medial graph. Such a region corresponds to a collection of nodes in the original graph,

all labeled with the same color. The proof of the formula Z[G] = QN/2{K(G)} then
involves recounting boundaries of regions in correspondence with the loops in the link

diagram. The advantage of the bracket expansion of the dichromatic polynomial is that

it shows that this graph invariant is part of a family of polynomials that includes the

Jones polynomial and it shows how the dichromatic polynomial for a graph whose me-

dial is a braid closure can be expressed in terms of the Temperley-Lieb algebra. This in

turn reflects on the sturcture of the Potts model for planar graphs, as we remark below.

It is well-known that the partition function PG(Q, T ) for the Q-state Potts model
in statistical mechanics on a graphG is equal to the dichromatic polynomial when

v = eJ 1

kT − 1

where T is the temperature for the model and k is Boltzmann’s constant. Here J = ±1
according as we work with the ferromagnetic or anti-ferromagnetic models (see [3]

Chapter 12). For simplicity we denote

K = J
1

kT
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J = +1 or -1 (ferromagnetic or antiferromagnetic models)

k = Boltzmann’s constant

T = Temperature



a smoothing of type A, then ∂i(s) is given by the rules discussed above (with the
same signs). The compatibility conditions that we have discussed show that partials

commute in the sense that ∂i(∂j(s)) = ∂j(∂i(s)) for all i and j. One then defines
signed boundary formulas in the usual way of algebraic topology. One way to think of

this regards the complex as the analogue of a complex in DeRahm cohomology. Let

{dx1, dx2, · · · , dxn} be a formal basis for a Grassmann algebra so that dxi ∧ dxj =
−dxi ∧ dxj Starting with enhanced states s in C0(K) (that is, state with all A-type
smoothings) Define formally, di(s) = ∂i(s)dxi and regard di(s) as identical with
∂i(s) as we have previously regarded it in C1(K). In general, given an enhanced state
s in Ck(K) with B-smoothings at locations i1 < i2 < · · · < ik, we represent this
chain as s dxi1 ∧ · · · ∧ dxik

and define

∂(s dxi1 ∧ · · · ∧ dxik
) =

n
∑

j=1

∂j(s) dxj ∧ dxi1 ∧ · · · ∧ dxik
,

just as in a DeRahm complex. The Grassmann algebra automatically computes the cor-

rect signs in the chain complex, and this boundary formula gives the original boundary

formula when we take coefficients modulo two. Note, that in this formalism, partial

differentials ∂i of enhanced states with a B-smoothing at the site i are zero due to the
fact that dxi ∧ dxi = 0 in the Grassmann algebra. There is more to say and more to
discuss about the use of Grassmann algebra in this context. For example, this approach

clarifies parts of the construction in [11].

It of interest to examine this analogy between the Khovanov (co)homology and De-

Rahm cohomology. In that analogy the enhanced states correspond to the differentiable

functions on a manifold. The Khovanov complex Ck(K) is generated by elements of
the form s dxi1 ∧· · ·∧dxik

where the enhanced state s hasB-smoothings at exactly the
sites i1, · · · , ik. If we were to follow the analogy with DeRahm cohomology literally,
we would define a new complex DR(K) where DRk(K) is generated by elements
s dxi1 ∧ · · ·∧ dxik

where s is any enhanced state of the linkK. The partial boundaries
are defined in the same way as before and the global boundary formula is just as we

have written it above. This gives a new chain complex associated with the link K.
Whether its homology contains new topological information about the link K will be

the subject of a subsequent paper.

3 The Dichromatic Polynomial and the Potts Model

We define the dichromatic polynomial as follows:

Z[G](v, Q) = Z[G′](v, Q) + vZ[G′′](v, Q)

Z[• # G] = QZ[G].

whereG′ is the result of deleting an edge fromG, whileG′′ is the result of contracting

that same edge so that its end-nodes have been collapsed to a single node. In the second

equation, • represents a graph with one node and no edges, and • # G represents the

disjoint union of the single-node graph with the graphG.
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K(G)

Figure 4: Medial Graph, Checkerboard Graph and K(G)

so that

v = eK − 1.

We have the identity

PG(Q, T ) = Z[G](eK − 1, Q).

The partition function is given by the formula

PG(Q, T ) =
∑

σ

eKE(σ)

where σ is an assignment of one element of the set {1, 2, · · · , Q} to each node of the
graph G, and E(σ) denotes the number of edges of the graph G whose end-nodes

receive the same assignment from σ. In this model, σ is regarded as a physical state of
the Potts system andE(σ) is the energy of this state. Thus we have a link diagrammatic
formulation for the Potts partition function for planar graphsG.

PG(Q, T ) = QN/2{K(G)}(Q, v = eK − 1)

whereN is the number of nodes in the graphG.

This bracket expansion for the Potts model is very useful in thinking about the

physical structure of the model. For example, since the bracket expansion can be ex-

pressed in terms of the Temperley-Lieb algebra one can use this formalism to express

the expansion of the Potts model in terms of the Temperley-Lieb algebra. This method

clarifies the fundamental relationship of the Potts model and the algebra of Temperley

and Lieb. Furthermore the conjectured critical temperature for the Potts model occurs

12



In [8, 9] it is shown that the dichromatic polynomial Z[G](v, Q) for a plane graph
can be expressed in terms of a bracket state summation of the form

{ } = { } + Q− 1

2 v{ } (9)

with

{©} = Q
1

2 .

Here

Z[G](v, Q) = QN/2{K(G)}

where K(G) is an alternating link diagram associated with the plane graph G so that

the projection of K(G) to the plane is a medial diagram for the graph. Here we use
the opposite convention from [9] in associating crossings to edges in the graph. We set

K(G) so that smoothingK(G) along edges of the graph give rise to B-smoothings of
K(G). See Figure 4. The formula above, in bracket expansion form, is derived from
the graphical contraction-deletion formula by translating first to the medial graph as

indicated in the formulas below:

Z[ ] = Z[ ] + vZ[ ].

Z[R " K] = QZ[K].

Here the shaded medial graph is indicated by the shaded glyphs in these formulas. The

medial graph is obtained by placing a crossing at each edge ofG and then connecting all
these crossings around each face ofG as shown in Figure ?. The medial can be checker-

board shaded in relation to the original graph G, and encoded with a crossing structure

so that it represents a link diagram. R denotes a connected shaded region in the shaded

medial graph. Such a region corresponds to a collection of nodes in the original graph,

all labeled with the same color. The proof of the formula Z[G] = QN/2{K(G)} then
involves recounting boundaries of regions in correspondence with the loops in the link

diagram. The advantage of the bracket expansion of the dichromatic polynomial is that

it shows that this graph invariant is part of a family of polynomials that includes the

Jones polynomial and it shows how the dichromatic polynomial for a graph whose me-

dial is a braid closure can be expressed in terms of the Temperley-Lieb algebra. This in

turn reflects on the sturcture of the Potts model for planar graphs, as we remark below.

It is well-known that the partition function PG(Q, T ) for the Q-state Potts model
in statistical mechanics on a graphG is equal to the dichromatic polynomial when

v = eJ 1

kT − 1

where T is the temperature for the model and k is Boltzmann’s constant. Here J = ±1
according as we work with the ferromagnetic or anti-ferromagnetic models (see [3]

Chapter 12). For simplicity we denote

K = J
1

kT
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for T when Q− 1

2 v = 1. We see clearly in the bracket expansion that this value of T
corresponds to a point of symmetry of the model where the value of the partition func-

tion does not depend upon the designation of over and undercrossings in the associated

knot or link. This corresponds to a symmetry between the plane graphG and its dual.

We first analyze how our heuristics leading to the Khovanov homology looks when

generalized to the context of the dichromatic polynomial. (This is a different approach

to the question than the method of Stosic [15] or [14], but see the next section for a

discussion of Stosic’s approach to categorifying the dichromatic polynomial.) We then

ask questions about the relationship of Khovanov homology and the Potts model. It is

natural to ask such questions since the adjacency of states in the Khovanov homology

corresponds to an adjacency for energetic states of the physical system described by

the Potts model, as we shall describe below.

For this purpose we now adopt yet another bracket expansion as indicated below.

We call this two-variable bracket expansion the ρ-bracket. It reduces to the Khovanov
version of the bracket as a function of q when ρ is equal to one.

[ ] = [ ] − qρ[ ] (10)

with

[©] = q + q−1.

We can regard this expansion as an intermediary between the Potts model (dichromatic

polynomial) and the topological bracket. When ρ = 1 we have the topological bracket
expansion in Khovanov form. When

−qρ = Q− 1

2 v

and

q + q−1 = Q
1

2 ,

we have the Potts model. We shall return to these parametrizations shortly.

Just as in the last section, we have

[K] =
∑

s

(−ρ)nB(s)qj(s)

where nB(s) is the number of B-type smoothings in s, λ(s) is the number of loops in
s labeled 1 minus the number of loops labeledX, and j(s) = nB(s) + λ(s). This can
be rewritten in the following form:

[K] =
∑

i ,j

(−ρ)iqjdim(Cij)

=
∑

j

qj
∑

i

(−ρ)idim(Cij) =
∑

j

qjχρ(C• j),

13
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where we define Cij to be the linear span of the set of enhanced states with nB(s) = i
and j(s) = j. Then the number of such states is the dimension dim(Cij).Nowwe have
expressed this general bracket expansion in terms of generalized Euler characteristics

of the complexes:

χρ(C• j) =
∑

i

(−ρ)idim(Cij).

These generalized Euler characteristics become classical Euler characteristics when

ρ = 1, and, in that case, are the same as the Euler characteristic of the homolgy. With
ρ not equal to 1, we do not have direct access to the homology.

Nevertheless, I believe that this raises a significant question about the relationship

of [K](q, ρ) with Khovanov homology. We get the Khovanov version of the bracket
polynomial for ρ = 1 so that for ρ = 1 we have

[K](q, ρ = 1) =
∑

j

qjχρ(C• j) =
∑

j

qjχ(H(C• j)).

Away from ρ = 1 one can ask what is the influence of the homology groups on the
coefficients of the expansion of [K](q, ρ), and the corresponding questions about the
Potts model. This is a way to generalize questions about the relationship of the Jones

polynomial with the Potts model. In the case of the Khovanov formalism, we have

the same structure of the states and the same homology theory for the states in both

cases, but in the case of the Jones polynomial (ρ-bracket expansion with ρ = 1) we
have expressions for the coefficients of the Jones polynomial in terms of ranks of the

Khovanov homology groups. Only the ranks of the chain complexes figure in the Potts

model itself. Thus we are suggesting here that it is worth asking about the relationship

of the Khovanov homology with the dichromatic polynomial, the ρ-bracket and the
Potts model without changing the definition of the homology groups or chain spaces.

This also raises the question of the relationship of the Khovanov homology with those

constructions that have been made (e.g. [15]) where the homology has been adjusted

to fit directly with the dichromatic polynomial. We will take up this comparison in the

next section.

We now look more closely at the Potts model by writing a translation between the

variables q, ρ andQ, v.We have

−qρ = Q− 1

2 v

and

q + q−1 = Q
1

2 ,

and from this we conclude that

q2 −
√

Qq + 1 = 0.

Whence

q =

√
Q ±

√
Q − 4

2
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and
1

q
=

√
Q ∓

√
Q − 4

2
.

Thus

ρ = −
v√
Qq

= v(
−1 ±

√

1 − 4/Q

2
)

For physical applications, Q is a positive integer greater than or equal to 2. Let us
begin by analyzing the Potts model at criticality (see discussion above)where−ρq = 1.
Then

ρ = −
1

q
=

−
√

Q ±
√

Q − 4

2
.

For the Khovanov homology (its Euler characteristics) to appear directly in the partition

function we want

ρ = 1.

Thus we want

2 = −
√

Q ±
√

Q − 4.

Squaring both sides and collecting terms, we find that 4−Q = ∓
√

Q
√

Q − 4. Squaring
once more, and collecting terms, we find that the only possibility for ρ = 1 is Q = 4.
Returning to the equation for ρ, we see that this will be satisfied when we take

√
4 =

−2. This can be done in the parametrization, and then the partition function will have
Khovanov topological terms. However, note that with this choice, q = −1 and so
v/

√
Q = −ρq = 1 implies that v = −2. Thus eK − 1 = −2, and so

eK = −1.

From this we see that in order to have ρ = 1 at criticality, we need a 4-state Potts model
with imaginary temperature variableK = (2n+1)iπ. It is worthwhile considering the
Potts models at imaginary temperature values. For example the Lee-Yang Theorem

[13] shows that under certain circumstances the zeros on the partition function are on

the unit circle in the complex plane. We take the present calculation as an indication of

the need for further investigation of the Potts model with real and complex values for

its parameters.

Now we go back and consider ρ = 1 without insisting on criticality. Then we have
1 = −v/(q

√
Q) so that

v = −q
√

Q =
−Q ∓

√
Q
√

Q − 4

2
.

From this we see that

eK = 1 + v =
2 − Q ∓

√
Q
√

Q − 4

2
.

From this we get the following formulas for eK : ForQ = 2we have eK = ±i. For Q =

3, we have eK = −1±
√

3i
2 . ForQ = 4 we have eK = −1. ForQ > 4 it is easy to verify
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At criticality Potts meets Khovanov at four colors 
and imaginary temperature!
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For Q >4, that eK is real and negative. Thus in all cases of ρ = 1 we find that the Potts model
has complex temperature values. In a subsequent paper, we shall attempt to analyze

the influence of the Khovanov homology at these complex values on the behaviour of

the model for real temperatures.

4 The Potts Model and Stosic’s Categorification of the

Dichromatic Polynomial

In [15] Stosic gives a categorification for certain specializations of the dichromatic

polynomial. In this section we describe this categorification, and discuss its relation

with the Potts model.

For this purpose, we define, as in the previous section, the dichromatic polynomial

through the formulas:

Z[G](v, Q) = Z[G′](v, Q) + vZ[G′′](v, Q)

Z[• ! G] = QZ[G].

whereG′ is the result of deleting an edge fromG, whileG′′ is the result of contracting

that same edge so that its end-nodes have been collapsed to a single node. In the second

equation, • represents a graph with one node and no edges, and • ! G represents the

disjoint union of the single-node graph with the graph G. The graph G is an arbitrary

finite (multi-)graph. This formulation of the dichromatic polynomial reveals its origins

as a generalization of the chromatic polynomial for a graphG. The case where v = −1
is the chromatic polynonmial. In that case, the first equation asserts that the number of

proper colorings of the nodes of G using Q colors is equal to the number of colorings

of the deleted graph G′ minus the number of colorings of the contracted graph G′′.
This statement is a tautology since a proper coloring demands that nodes connected by

an edge are colored with distinct colors, whence the deleted graph allows all colors,

while the contracted graph allows only colorings where the nodes at the original edge

receive the same color. The difference is then equal to the number of colorings that are

proper at the given edge.

We reformulate this recursion for the dichromatic polynomial as follows: Instead

of contracting an edge of the graph to a point in the second term of the formula, simply

label that edge (say with the letter x) so that we know that it has been used in the
recursion. For thinking of colorings from the set {1, 2, · · · , Q} when Q is a positive

integer, regard an edge marked with x as indicating that the colors on its two nodes are
the same. This rule conicides with our interpretation of the coloring polynomial in the

last paragraph. ThenG′′ in the deletion-contraction formula above denotes the labeling

of the edge by the letter x.We then see that we can write the following formula for the
dichormatic polynomial:

Z[G] =
∑

H⊂G

Q|H|ve(H)
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Thus we get complex temperature values in 
all cases where the coefficients of the Potts 
model are given directly in terms of Euler 
characteristics from Khovanov homology.


