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The previous slide shows a stage, near criticality,
of a simulation of the Ising model for a rectangular
two dimensional lattice. The space is divided into
many domains of constant spin (the two colors that
are indicated here).




In this lecture we will eventually discuss
the Potts model (a generalization of the
Ising model). The Potts model raises a
question about techniques that have
evolved in the knot theory. In these
techniques, state loop configurations that
differ by one smoothing, figure in the
measurement of a homology theory --
Khovanov Homology -- that is associated
with a knot diagram. Our question is --
How is Khovanov Homology related to
the physics of statistical mechanics!?

One clue is that these loops are the
boundaries of regions of constant spin.




We will begin by recalling the quantum mechanical
framework and how one can place the Jones polynomial
into this framework. This will provide a natural transition to
Khovanov homology, and let us get to
the questions about statistical mechanics models.

So the agenda is
Quantum Information
and
Knots in Physics.
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Quantum Mechanics in a Nutshell

0. A state of a physical system corresponds to a unit
vector |S> in a complex vector space.

|. (measurement free) Physical processes =
are modeled by unitary transformations U
applied to the state vector: |S> ----- > U|S>

2.1f 8> =z | )

in 2 measurement basis {|1>,|2>,...,|n>}, then

1>+ z 2>+...+zn|n>

measurement of |S> yields |[i> with probability
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Hadamard Test - For Trace(U).

|0> H O— H - Measure
T frequency
of
phi> U 0>

[
H = [ o ]!Sqrt(Q}

|0> occurs with probability
|/2 + Re[<phi|U|phi>]/2.




Apply Hadamard Gate
1
H|0) = —(]0 1
0) \/5(\ )+ (1))
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H|l) = —(]0) — |1
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to first qubit of
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The resulting state is

= (HI0) @ ) + H1) @ Ul)) = £((10) + 1)) @ &) + (10) — 1)) & U
= 2010y @ (19) + U1) + 1) @ (1) — UJw).

The expectation for [0> is
1
<<¢\ + @IUN(9) +UW)) = 5 + Re<w|U|w>

The imaginary part is obtained by applying the
same procedure to
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Untying Knots by NMR: first experimental implementation
of a quantum algorithm for approximating the Jones polynomial
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A knot is defined as a closed, non-self-intersecting curve
that is embedded in three dimensions.

example: “construction” of the Trefoil knot:

Ueod &

make a fuse the make it
“knot” free ends “look nice”

start with a rope end up with a Trefoil

J. W. Alexander proved, that any knot can be represented
as a closed braid (polynomial time algorithm)

generators of the 3 strand braid group:

IR

It is well known in knot theory, how to obtain the unitary matrix representation
of all generators of a given braid goup (see “Temperley-Lieb algebra™ and “path
model representation”). The unitary matrices U, and U,, corresponding to the
generators o, and o, of the 3 strand braid group are shown on the left, where the
variable “8” is related to the variable “A” of the Jones polynomial by: A = ¢ "
The unitary matrix representations of ;' and ;' are given by U;' and U;'.

The knot or link that was expressed as a product of braid group generators can
therefore also be expressed as a product of the corresponding unitary matrices.

Instead of applying the unitary matrix U, we apply it’s controlled variant cU.
This matrix is especially suited for NMR quantum computers [4] and other
thermal state expectation value quantum computers: you only have to apply
cU to the NMR product operator /,, and measure /,, and /, in order to obtain
the trace of the original matrix U.

Independent of the dimension of matrix U you only need ONE extra qubit for the
implementation of ¢U as compared to the implementation of U itself.

The measurement of /,, and 7, can be accomplished in one single-scan experiment.

All knots and links can be expressed as a product of braid group generators (see
above). Hence the corresponding NMR pulse sequence can also be expressed as
a sequence of NMR pulse sequence blocks, where each block corresponds to the
controlled unitary matrix cU of one braid group generator.




Quantum knots and mosaics

with -5 N .
Sam Lty sS
Lomonaco =P L i

Each of these knot mosaics is a string made up of the following 11 symbols
| | | B B | = B B _|;
Al | 2 B ’

called mosaic tiles.

Each mosaic is a tensor product of
elementary tiles.




This observable is a quantum knot invariant
for 4x4 tile space. Knots have characteristic
invariants in nxn tile space.

Superpositions of combinatorial knot
configurations are seen as quantum
states.




A knot is an embedding of a simple closed
curve in three dimensional space.

Two knots K, L are equivalent if there is

a homeomorphism h:R3 ----> R3
so that h(K) = L.
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Figure 2 - The Reidemeister Moves.

Reidemeister Moves
reformulate knot theory in
terms of graph
combinatorics.




Bracket Polynomial Model
for the Jones Polynomial

(XD =400 +471) ()




Bracket Polynomial of the Trefoil Knot

(R4S )& )
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Reformulating the Bracket

Let ¢(K) = number of crossings on link K.
-c(K) -2
Form A <K> and replace A by -q

Then the skein relation for <K> will
be replaced by:

OX) = X) —a() ()
(O) =(g+q¢ 1)
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The form of the
expansion is the
same as
a loop expansion
of the Potts
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We make a Hilbert space whose basis is a set of
(enhanced) states of the bracket polynomial for a
given knot diagram K.
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Enhanced states label each loop with
+1 or -I.
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Enhanced States
circumvent the binomial
theorem.




Enhanced States

gle— 1= X

¢ = 41 =1

For reasons that will soon become apparent, we
let -1 be denoted by X and +1 be denoted by I.

(The moduleV will be generated by | and X))




An enhanced state
that contributes

[(@)(q)(1/9)] [(-q) (-9) (-q)]
'l -1 B B B

to the revised
bracket state sum.




Enhanced State Sum Formula for the Bracket

(K) = ¢ (=1)'¥




A Quantum Statistical Model for the Bracket
Polynonmial.

Let C(K) denote a Hilbert space
with basis |s> where s runs over the
enhanced states of a knot or link diagram K.

We define a unitary transformation.
U:C(K)— C(K)
Uls) = (=1)"¢’)]s)

q is chosen on the unit circle in the
complex plane.




<K> =Trace(U).

V) =2 _1s)

Lemma. The evaluation of the bracket polynomial is given by the following formula

This gives a new quantum algorithm for the
Jones polynomial (via Hadamard Test).




Khovanov Homology - Jones Polynomial as an
Euler Characteristic

Two key motivating ideas are involved in finding the Khovanov invariant. First
of all, one would like to categorify a link polynomial such as (K). There are many
meanings to the term categorify, but here the quest is to find a way to express the link
polynomial as a graded Euler characteristic (K) = x,(H(K)) for some homology
theory associated with (K).

We wiill formulate Khovanov
Homology
in the context of our quantum
statistical model for the bracket
polynomial.




CATEGORIFICATION
View the next slide as a category.

The cubical shape of this category suggests
making a homology theory.
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Functor : Cubical Category ------- > Module Category.
In order to make a non-trivial homology theory
we need a functor from this cubical category of states
to a module category.

Each state loop will map to a module V.

Unions of loops will map to
tenor products of this module.




The Functor from the cubical category to the module
category demands multiplication and comultiplication in
the module.

()
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The boundary is a sum of partial differentials
corresponding to resmoothings on the states.

(_ N Each state loop
7N\ is 2 module.

\/ A collection of state

/-.T\ loops corresponds to

O a tensor product of
§-1 these modules.




The commutation of the partial boundaries demands
a structure of Frobenius algebra for the algebra
associated to a state circle.
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It turns out that one can take the algebra
generated by | and X with
X2=0 and

AX)=X®Xand A(1) =1 X+ X ®1.

The chain complex is then generated by
enhanced states with loop labels | and X.




Enhanced State Sum Formula for the Bracket
(K) =" ¢ (=1)"®

j(s) = np(s) + As)

i(s) = nB(s) = number of B-smoothings in the
state s.
A(S) = number of +1 loops minus number of -1 loops.

(K) =) _(=1)'¢’dim(C")
) LsJ
C ') = module generated by enhanced states
with i =ng and j as above.




(K) =) (=1)'¢’dim(C")

2,]

The Khovanov differential acts in the form
0:CY — C1ly

(For j to be constant as i increases by |,

A\(s) decreases by |.)




The differential increases the homological
grading i by | and leaves fixed the quantum grading j.

Then

Zq Z ) dim/(CY) quC'J
X(H(C*)) = x(C*7)

qu (C*7))







with  Uls) = (=1)"¢/)]s),
0:CY — Cvrty

U0+ oU = 0.

This means that the unitary transformation
U acts on the homology so that

U:H(C(K)) -----> H(C(K))




Eigenspace Picture

CY = @)\Cg

. 0 1 2
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SUMMARY

We have interpreted the bracket polynomial as a
quantum amplitude by making a Hilbert space C(K)
whose basis is the collection of enhanced states of the
bracket.

This space C(K) is naturally intepreted as the
chain space for the Khovanov homology
associated with the bracket polynomial.

(K) = @[Uly).

The homology and the unitary transformation U
speak to one another via the formula

U0+ oU = 0.




Questions

We have shown how Khovanov homology fits
into the context of quantum information related to
the Jones polynomial and how the polynomial is
replaced in this context by a unitary transformation U
on the Hilbert space of the model. This transformation U
acts on the homology, and its eigenspaces give a natural
decomposition of the homology that is related to the
quantum amplitude corresponding to the Jones polynomial.

The states of the model are intensely
combinatorial, related to the
representation of the knot or link.

How can this formulation be used in
quantum information theory and in
statistical mechanics?!




Potts Model and
Statistical Mechanics




Partition Function
Recall that the partition function of a physical
system has the form of the sum over all states s
of the system the quantity

exp[(J/kT)E(s)]

where
] = +1 or -1 (ferromagnetic or antiferromagnetic models)
k = Boltzmann’s constant

T = Temperature
E(s) = energy of the state s




Potts Model

In the Potts model, one has a graph G
and assigns labels (spins, charges) to each
node of the graph from a label set
{1,2,..,Q}.

A state s is such a labeling.

The energy E(s) is equal to the
number of edges in the graph where the

endpoints of the edge receive the same
label.

For Q = 2, the Potts model is equivalent to the
Ising model. The Ising model was shown by Osager
to have a phase transition in the limit of square
planar lattices ( in the the 1940’s).




The partition function Pg(Q,T) for the
Q-state Potts model on a graph G is given by the
dichromatic polynomial

Z1G(v, Q)

where
1
v =el 7T — 1

J = +1 or -1 (ferromagnetic or antiferromagnetic models)

k = Boltzmann’s constant

T = Temperature




The Dichromatic Polynomial and the Potts Model
Dichromatic Polynomial
Z|Gl(v,Q) = Z|G'](v,Q) + vZ[G"](v, Q)
Zle LUG] = QZ|G].

G G’ G”
Delete Contract
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Figure 4: Medial Graph, Checkerboard Graph and K(G)
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Theorem: Z[G|(v, Q) = QN/Z{K(G)}

where K(G) is an alternating link associated with
the medial graph of G and

X3=3+Q =D
{O}=Q*

Q_%U — 1
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To analyze Khovanov homology, we adopt a new
bracket

N]=X]-aD(
Ol=q+q"

When rho = |, we have the topological
bracket in Khovanov form.

When — 4

we have the Potts model.




K] =) (=p)"2®¢

S

K] =) (—p)'¢dim(CY)

?,)
—Zq Z )'dim(CY) Zq X, (C*7)

where




=) @x.(C*7) qu H(C*7))
j

Away from rho=1, one can ask what is
the influence of the Khovanov homology
on the coefficients in the expansion of

Kl(q,p)

and corresponding questions about the
Potts model.




Tracking Potts

—qp = Q_%’U




At criticality Potts meets Khovanov at four colors
and imaginary temperature!

1 V@rVa— 1
q 2
Criticality: —pg =1
p:_lz —/Q £VQ — 14
q 2 |

Suppose that P — 1.

Then 2:—\/7::\/62—4.
o 4-Q=FV/QYG 1

And need Q =4 and eK =




Now consider rho = | without insisting on

criticality.
1 =—v/(¢v@Q)
o _U—li\/1—4/Q
A T 5 )
—() — 4
o= oy 9TVATT
eK:1+v:2_Q::\/Q\/Q_4.




K:

For () = 2 we have e +1.
ForQ=3, eff = _1:§\/§i.
For Q = 4 we have e* = —1.

For Q >4, e* is real and negative.

Thus we get complex temperature values in
all cases where the coefficients of the Potts
model are given directly in terms of Euler
characteristics from Khovanov homology.




